What’s Next? Future Directions in Parameterized Complexity

  • Dániel Marx

Abstract

The progress in parameterized complexity has been very significant in recent years, with new research questions and directions, such as kernelization lower bounds, appearing and receiving considerable attention. This speculative article tries to identify new directions that might become similar hot topics in the future. First, we point out that the search for optimality in parameterized complexity already has good foundations, but lots of interesting work can be still done in this area. The systematic study of kernelization became a very successful research direction in recent years. We look at what general conclusions one can draw from these results and we argue that the systematic study of other algorithmic techniques should be modeled after the study of kernelization. In particular, we set up a framework for understanding which problems can be solved by branching algorithms. Finally, we discuss that the domain of directed graph problems is a challenging area which can potentially see significant progress in the following years.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abu-Khzam, F.N.: An improved kernelization algorithm for r-set packing. Inf. Process. Lett. 110(16), 621–624 (2010)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Abu-Khzam, F.N.: A kernelization algorithm for d-hitting set. J. Comput. Syst. Sci. 76(7), 524–531 (2010)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alber, J., Fernau, H., Niedermeier, R.: Parameterized complexity: exponential speed-up for planar graph problems. J. Algorithms 52(1), 26–56 (2004)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Alber, J., Fiala, J.: Geometric separation and exact solutions for the parameterized independent set problem on disk graphs. J. Algorithms 52(2), 134–151 (2004)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Alon, N., Lokshtanov, D., Saurabh, S.: Fast FAST. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 49–58. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Barát, J.: Directed path-width and monotonicity in digraph searching. Graphs and Combinatorics 22(2), 161–172 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Becker, A., Bar-Yehuda, R., Geiger, D.: Randomized algorithms for the loop cutset problem. J. Artif. Intell. Res. (JAIR) 12, 219–234 (2000)MathSciNetMATHGoogle Scholar
  9. 9.
    Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: DAG-Width and Parity Games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 524–536. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Björklund, A.: Determinant sums for undirected hamiltonicity. In: Proceedings of the 51st Annual Symposium on Foundations of Computer Science, FOCS 2010, pp. 173–182 (2010)Google Scholar
  11. 11.
    Bodlaender, H.L.: On disjoint cycles. Int. J. Found. Comput. Sci. 5(1), 59–68 (1994)CrossRefMATHGoogle Scholar
  12. 12.
    Bodlaender, H.L.: Kernelization: New Upper and Lower Bound Techniques. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (Meta) kernelization. In: Proceedings of the 50th Annual Symposium on Foundations of Computer Science, FOCS 2009, pp. 629–638 (2009)Google Scholar
  15. 15.
    Bodlaender, H.L., Heggernes, P., Villanger, Y.: Faster parameterized algorithms for minimum fill-in. Algorithmica 61(4), 817–838 (2011)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Bousquet, N., Daligault, J., Thomassé, S.: Multicut is FPT. In: Proceedings of the 43rd Annual Symposium on Theory of Computing, STOC 2011, pp. 459–468 (2011)Google Scholar
  17. 17.
    Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inform. Process. Lett. 58(4), 171–176 (1996)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Calabro, C., Impagliazzo, R., Paturi, R.: The Complexity of Satisfiability of Small Depth Circuits. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 75–85. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Cechlárová, K., Schlotter, I.: Computing the Deficiency of Housing Markets with Duplicate Houses. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 72–83. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization: Lower bounds and upper bounds on kernel size. SIAM J. Comput. 37(4), 1077–1106 (2007)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback vertex set problems. J. Comput. Syst. Sci. 74(7), 1188–1198 (2008)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Chen, J., Huang, X., Kanj, I.A., Xia, G.: Linear FPT reductions and computational lower bounds. In: Proceedings of the 36th Annual Symposium on Theory of Computing, STOC 2004, pp. 212–221. ACM, New York (2004)Google Scholar
  23. 23.
    Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor. Comput. Sci. 411(40-42), 3736–3756 (2010)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Chen, J., Liu, Y., Lu, S.: An Improved Parameterized Algorithm for the Minimum Node Multiway Cut Problem. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 495–506. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM 55(5) (2008)Google Scholar
  26. 26.
    Chitnis, R., Hajiaghayi, M., Marx, D.: Fixed-parameter tractability of directed multiway cut parameterized by the size of the cutset. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pp. 1713–1725 (2012)Google Scholar
  27. 27.
    Chudnovsky, M., Fradkin, A.O., Seymour, P.D.: Tournament immersion and cutwidth. J. Comb. Theory, Ser. B 102(1), 93–101 (2012)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Chudnovsky, M., Scott, A., Seymour, P.: Vertex disjoint paths in tournaments (manuscript)Google Scholar
  29. 29.
    Cygan, M., Marx, D., Pilipczuk, M., Pilipczuk, M., Schlotter, I.: Parameterized Complexity of Eulerian Deletion Problems. In: Kolman, P., Kratochvíl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 131–142. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  30. 30.
    Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. In: Proceedings of the 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, pp. 150–159 (2011)Google Scholar
  31. 31.
    Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: On Multiway Cut Parameterized above Lower Bounds. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 1–12. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  32. 32.
    Dantsin, E., Hirsch, E.A.: Satisfiability Certificates Verifiable in Subexponential Time. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 19–32. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  33. 33.
    Dehne, F., Fellows, M., Langston, M., Rosamond, F., Stevens, K.: An \(O(2\sp{O(k)}n\sp 3)\) FPT algorithm for the undirected feedback vertex set problem. Theory Comput. Syst. 41(3), 479–492 (2007)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Dell, H., Marx, D.: Kernelization of packing problems. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pp. 68–81 (2012)Google Scholar
  35. 35.
    Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. In: Proceedings of the 42nd Annual Symposium on Theory of Computing, STOC 2010, pp. 251–260 (2010)Google Scholar
  36. 36.
    Demaine, E.D., Hajiaghayi, M.: The bidimensionality theory and its algorithmic applications. Comput. J. 51(3), 292–302 (2008)CrossRefGoogle Scholar
  37. 37.
    Demaine, E.D., Hajiaghayi, M., Thilikos, D.M.: The bidimensional theory of bounded-genus graphs. SIAM J. Discrete Math. 20(2), 357–371 (2006)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Demaine, E.D., Hajiaghayi, M.T.: Bidimensionality: new connections between FPT algorithms and PTASs. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, pp. 590–601 (2005)Google Scholar
  39. 39.
    Dorn, F.: Planar subgraph isomorphism revisited. In: Proceedings 27th International Symposium on Theoretical Aspects of Computer Science, STACS 2010. Dagstuhl Seminar Proceedings, vol. 5, pp. 263–274. Leibniz-Zentrum für Informatik, Schloss Dagstuhl, Germany (2010)Google Scholar
  40. 40.
    Dorn, F., Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Beyond bidimensionality: Parameterized subexponential algorithms on directed graphs. In: Proceedings 27th International Symposium on Theoretical Aspects of Computer Science, STACS 2010, Dagstuhl Seminar Proceedings, vol. 5, pp. 251–262. Leibniz-Zentrum für Informatik, Schloss Dagstuhl, Germany (2010)Google Scholar
  41. 41.
    Downey, R.: A Basic Parameterized Complexity Primer. In: Bodlaender, H.L., et al. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 91–128. Springer, Heidelberg (2012)Google Scholar
  42. 42.
    Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness. In: Proceedings of the Twenty-first Manitoba Conference on Numerical Mathematics and Computing, Winnipeg, MB, vol. 87, pp. 161–178 (1992)Google Scholar
  43. 43.
    Downey, R.G., Fellows, M.R.: Parameterized computational feasibility. In: Clote, P., Remmel, J. (eds.) Proceedings of the Second Cornell Workshop on Feasible Mathematics, Feasible Mathematics II, pp. 219–244. Birkhäuser, Boston (1995)CrossRefGoogle Scholar
  44. 44.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)Google Scholar
  45. 45.
    Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J. Graph Algorithms Appl. 3(3) (1999)Google Scholar
  46. 46.
    Feige, U.: Faster FAST (feedback arc set in tournaments). CoRR, abs/0911.5094 (2009)Google Scholar
  47. 47.
    Fellows, M.R., Fomin, F.V., Lokshtanov, D., Losievskaja, E., Rosamond, F.A., Saurabh, S.: Distortion Is Fixed Parameter Tractable. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 463–474. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  48. 48.
    Fellows, M.R., Fomin, F.V., Lokshtanov, D., Rosamond, F.A., Saurabh, S., Szeider, S., Thomassen, C.: On the complexity of some colorful problems parameterized by treewidth. Inf. Comput. 209(2), 143–153 (2011)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM J. Comput. 33(4), 892–922 (2004)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)MATHGoogle Scholar
  51. 51.
    Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Algorithmic lower bounds for problems parameterized with clique-width. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, pp. 493–502 (2010)Google Scholar
  52. 52.
    Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms, 1st edn. Springer (2010)Google Scholar
  53. 53.
    Fomin, F.V., Pilipzuk, M.: Jungles, bundles, and fixed parameter tractability. CoRR, abs/1112. 1538 (2011)Google Scholar
  54. 54.
    Fomin, F.V., Villanger, Y.: Subexponential parameterized algorithm for minimum fill-in. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pp. 1737–1746 (2012)Google Scholar
  55. 55.
    Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. In: Proceedings of the 40th Annual Symposium on Theory of Computing, STOC 2008, pp. 133–142 (2008)Google Scholar
  56. 56.
    Ganian, R., Hliněný, P., Kneis, J., Meister, D., Obdržálek, J., Rossmanith, P., Sikdar, S.: Are There Any Good Digraph Width Measures? In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 135–146. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  57. 57.
    Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for closest string and related problems. Algorithmica 37(1), 25–42 (2003)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Guillemot, S.: FPT algorithms for path-transversal and cycle-transversal problems. Discrete Optimization 8(1), 61–71 (2011)MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Comput. System Sci. 72(8), 1386–1396 (2006)MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    Hertli, T.: 3-SAT faster and simpler — Unique-SAT bounds for PPSZ hold in general. In: Proceedings of the 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, pp. 277–284 (2011)Google Scholar
  61. 61.
    Hüffner, F., Niedermeier, R., Wernicke, S.: Techniques for practical fixed-parameter algorithms. Comput. J. 51(1), 7–25 (2008)CrossRefGoogle Scholar
  62. 62.
    Hunter, P., Kreutzer, S.: Digraph measures: Kelly decompositions, games, and orderings. Theor. Comput. Sci. 399(3), 206–219 (2008)MathSciNetCrossRefMATHGoogle Scholar
  63. 63.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. System Sci. 63(4), 512–530 (2001)MathSciNetCrossRefMATHGoogle Scholar
  64. 64.
    Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. J. Comb. Theory, Ser. B 82(1), 138–154 (2001)MathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput. 28(5), 1906–1922 (1999)MathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    Kawarabayashi, K.: Planarity allowing few error vertices in linear time. In: Proceedings of the 50th Annual Symposium on Foundations of Computer Science, FOCS 2009, pp. 639–648 (2009)Google Scholar
  67. 67.
    Khot, S., Raman, V.: Parameterized complexity of finding subgraphs with hereditary properties. Theor. Comput. Sci. 289(2), 997–1008 (2002)MathSciNetCrossRefMATHGoogle Scholar
  68. 68.
    Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε. In: 18th Annual IEEE Conference on Computational Complexity (CCC 2003), pp. 371–378 (2003)Google Scholar
  69. 69.
    Kratsch, S.: Co-nondeterminism in compositions: A kernelization lower bound for a Ramsey-type problem. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pp. 114–122 (2012)Google Scholar
  70. 70.
    Kratsch, S., Pilipczuk, M., Pilipczuk, M., Wahlström, M.: Fixed-parameter tractability of multicut in directed acyclic graphs. CoRR, abs/1202.5749 (2012)Google Scholar
  71. 71.
    Kreutzer, S., Ordyniak, S.: Digraph decompositions and monotonicity in digraph searching. Theor. Comput. Sci. 412(35), 4688–4703 (2011)MathSciNetCrossRefMATHGoogle Scholar
  72. 72.
    Kreutzer, S., Tazari, S.: Directed nowhere dense classes of graphs. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pp. 1552–1562 (2012)Google Scholar
  73. 73.
    Langston, M.A.: Fixed-Parameter Tractability, A Prehistory. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 3–16. Springer, Heidelberg (2012)Google Scholar
  74. 74.
    Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs of bounded treewidth are probably optimal. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pp. 777–789 (2011)Google Scholar
  75. 75.
    Lokshtanov, D., Marx, D., Saurabh, S.: Slightly superexponential parameterized problems. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pp. 760–776 (2011)Google Scholar
  76. 76.
    Lokshtanov, D., Misra, N., Saurabh, S.: Kernelization – Preprocessing with a Guarantee. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 129–161. Springer, Heidelberg (2012)Google Scholar
  77. 77.
    Ma, B., Sun, X.: More efficient algorithms for closest string and substring problems. SIAM J. Comput. 39(4), 1432–1443 (2009)MathSciNetCrossRefMATHGoogle Scholar
  78. 78.
    Marx, D.: Parameterized graph separation problems. Theoret. Comput. Sci. 351(3), 394–406 (2006)MathSciNetCrossRefMATHGoogle Scholar
  79. 79.
    Marx, D.: On the optimality of planar and geometric approximation schemes. In: 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), pp. 338–348 (2007)Google Scholar
  80. 80.
    Marx, D.: Closest substring problems with small distances. SIAM Journal on Computing 38(4), 1382–1410 (2008)MathSciNetCrossRefMATHGoogle Scholar
  81. 81.
    Marx, D.: Can you beat treewidth? Theory of Computing 6(1), 85–112 (2010)MathSciNetCrossRefMATHGoogle Scholar
  82. 82.
    Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by the size of the cutset. In: Proceedings of the 43rd Annual Symposium on Theory of Computing, STOC 2011, pp. 469–478 (2011)Google Scholar
  83. 83.
    Marx, D., Schlotter, I.: Obtaining a planar graph by vertex deletion. Algorithmica 62, 807–822 (2012)MathSciNetCrossRefMATHGoogle Scholar
  84. 84.
    Misra, N., Raman, V., Saurabh, S.: Lower bounds on kernelization. Discrete Optimization 8(1), 110–128 (2011)MathSciNetCrossRefMATHGoogle Scholar
  85. 85.
    Monien, B.: How to find long paths efficiently. In: Analysis and design of algorithms for combinatorial problems (Udine, 1982). North-Holland Math. Stud, vol. 109, pp. 239–254. North-Holland, Amsterdam (1985)CrossRefGoogle Scholar
  86. 86.
    Nemhauser, G.L., Trotter Jr., L.E.: Vertex packings: structural properties and algorithms. Math. Programming 8, 232–248 (1975)MathSciNetCrossRefMATHGoogle Scholar
  87. 87.
    Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series in Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)CrossRefMATHGoogle Scholar
  88. 88.
    Patrascu, M., Williams, R.: On the possibility of faster SAT algorithms. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, pp. 1065–1075 (2010)Google Scholar
  89. 89.
    Paturi, R., Pudlák, P.: On the complexity of circuit satisfiability. In: Proceedings of the 42nd Annual Symposium on Theory of Computing, STOC 2010, pp. 241–250 (2010)Google Scholar
  90. 90.
    Raman, V., Saurabh, S.: Parameterized algorithms for feedback set problems and their duals in tournaments. Theor. Comput. Sci. 351(3), 446–458 (2006)MathSciNetCrossRefMATHGoogle Scholar
  91. 91.
    Razgon, I., O’Sullivan, B.: Almost 2-SAT is fixed-parameter tractable. J. Comput. Syst. Sci. 75(8), 435–450 (2009)MathSciNetCrossRefMATHGoogle Scholar
  92. 92.
    Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations Research Letters 32(4), 299–301 (2004)MathSciNetCrossRefMATHGoogle Scholar
  93. 93.
    Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Combin. Theory Ser. B 63(1), 65–110 (1995)MathSciNetCrossRefMATHGoogle Scholar
  94. 94.
    Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Combin. Theory Ser. B 92(2), 325–357 (2004)MathSciNetCrossRefMATHGoogle Scholar
  95. 95.
    Scheffler, P.: A practical linear time algorithm for disjoint paths in graphs with bounded tree-width. Tech. Rep. 396/1994, Technical University of Berlin (1994)Google Scholar
  96. 96.
    Thilikos, D.M.: Graph Minors and Parameterized Algorithm Design. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 228–256. Springer, Heidelberg (2012)Google Scholar
  97. 97.
    Williams, R.: Finding paths of length k in O*(2k) time. Inf. Process. Lett. 109(6), 315–318 (2009)MathSciNetCrossRefMATHGoogle Scholar
  98. 98.
    Yap, C.K.: Some consequences of non-uniform conditions on uniform classes. Theor. Comput. Sci. 26, 287–300 (1983)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dániel Marx
    • 1
  1. 1.Computer and Automation Research InstituteHungarian Academy of Sciences (MTA SZTAKI)BudapestHungary

Personalised recommendations