FPT Suspects and Tough Customers: Open Problems of Downey and Fellows

  • Fedor V. Fomin
  • Dániel Marx

Abstract

We give an update on the status of open problems from the book “Parameterized Complexity” by Downey and Fellows.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ajtai, M.: The shortest vector problem in \(\ell_{\mbox{2}}\) is NP-hard for randomized reductions. In: STOC, pp. 10–19 (1998)Google Scholar
  2. 2.
    Alon, N., Yuster, R., Zwick, U.: Color-coding. J. Assoc. Comput. Mach. 42(4), 844–856 (1995)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hallett, M.T., Wareham, H.T.: Parameterized complexity analysis in computational biology. Computer Applications in the Biosciences 11(1), 49–57 (1995)Google Scholar
  4. 4.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Wareham, H.T.: The parameterized complexity of sequence alignment and consensus. Theor. Comput. Sci. 147(1, 2), 31–54 (1995)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chen, J., Liu, Y., Lu, S.: An improved parameterized algorithm for the minimum node multiway cut problem. Algorithmica 55(1), 1–13 (2009)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM 55(5), Art. 21, 19 (2008)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. In: STOC, pp. 177–186 (2008)Google Scholar
  8. 8.
    Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: On Multiway Cut Parameterized above Lower Bounds. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 1–12. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dehne, F., Fellows, M., Langston, M.A., Rosamond, F., Stevens, K.: An O(2O(k)n3) FPT Algorithm for the Undirected Feedback Vertex Set Problem. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 859–869. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I: Basic results. SIAM J. Comput. 24(4), 873–921 (1995)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: On completeness for W[1]. Theor. Comput. Sci. 141(1, 2), 109–131 (1995)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Downey, R.G., Fellows, M.R.: Parameterized computational feasibility. In: Feasible Mathematics II, pp. 219–244. Birkhäuser, Boston (1995)CrossRefGoogle Scholar
  14. 14.
    Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, New York (1999)CrossRefMATHGoogle Scholar
  15. 15.
    El-Zahar, M.H., Schmerl, J.H.: On the size of jump-critical ordered sets. Order 1(1), 3–5 (1984)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Fellows, M.R.: Parameterized Complexity: The Main Ideas and Some Research Frontiers. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 291–307. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Fellows, M.R., Koblitz, N.: Fixed-Parameter Complexity and Cryptography. In: Moreno, O., Cohen, G., Mora, T. (eds.) AAECC 1993. LNCS, vol. 673, pp. 121–131. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  18. 18.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2006)Google Scholar
  19. 19.
    Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism problem. Theoret. Comput. Sci. 10(2), 111–121 (1980)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable structures. J. ACM 48(6), 1184–1206 (2001)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Grohe, M.: Computing crossing numbers in quadratic time. In: STOC, pp. 231–236 (2001)Google Scholar
  22. 22.
    Grohe, M.: Computing crossing numbers in quadratic time. J. Comput. Syst. Sci. 68(2), 285–302 (2004)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Grohe, M., Kawarabayashi, K., Marx, D., Wollan, P.: Finding topological subgraphs is fixed-parameter tractable. In: Proceedings of the 43nd ACM Symposium on Theory of Computing, pp. 479–488 (2011)Google Scholar
  24. 24.
    Guillemot, S.: FPT algorithms for path-transversal and cycle-transversal problems. Discrete Optimization 8(1), 61–71 (2011)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Comput. Syst. Sci. 72(8), 1386–1396 (2006)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Gustedt, J.: Well quasi ordering finite posets and formal languages. J. Comb. Theory, Ser. B 65(1), 111–124 (1995)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Hartvigsen, D.: The planar multiterminal cut problem. Discrete Applied Mathematics 85(3), 203–222 (1998)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? Journal of Computer and System Sciences 63(4), 512–530 (2001)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Johnson, D.S.: A catalog of complexity classes. In: Handbook of Theoretical Computer Science. in Algorithms and Complexity, vol. (A), pp. 67–161 (1990)Google Scholar
  30. 30.
    Kawarabayashi, K., Reed, B.A.: Computing crossing number in linear time. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC 2007), pp. 382–390. ACM (2007)Google Scholar
  31. 31.
    Klein, P.N., Marx, D.: Solving planar k-terminal cut in \({O}(n^{c \sqrt{k}})\) time. To appear in ICALP 2012 (2012) Google Scholar
  32. 32.
    Langston, M.A., Plaut, B.C.: On algorithmic applications of the immersion order: An overview of ongoing work presented at the Third Slovenian International Conference on Graph Theory. Discrete Mathematics 182(1-3), 191–196 (1998)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Lokshtanov, D., Marx, D.: Clustering with Local Restrictions. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 785–797. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  34. 34.
    Marx, D.: A tight lower bound for planar multiway cut with fixed number of terminals. To appear in ICALP 2012 (2012)Google Scholar
  35. 35.
    Marx, D.: Parameterized graph separation problems. Theoret. Comput. Sci. 351(3), 394–406 (2006)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    McCartin, C.: An improved algorithm for the jump number problem. Inf. Process. Lett. 79(2), 87–92 (2001)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series in Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)CrossRefMATHGoogle Scholar
  38. 38.
    Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. J. Comput. Syst. Sci. 67(4), 757–771 (2003)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths proble. J. Combin. Theory Ser. B 63(1), 65–110 (1995)CrossRefMATHGoogle Scholar
  40. 40.
    Robertson, N., Seymour, P.D.: Graph minors XXIII. Nash-Williams’ immersion conjecture. J. Comb. Theory, Ser. B 100(2), 181–205 (2010)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Schrijver, A.: Finding k disjoint paths in a directed planar graph. SIAM J. Comput. 23(4), 780–788 (1994)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Scott, A.: On the parameterized complexity of finding short winning strategies in combinatorial games. Ph.D. thesis, University of Victoria (2009)Google Scholar
  43. 43.
    Thomassé, S.: A quadratic kernel for feedback vertex set. ACM Trans. Algorithms 6(2) (2010)Google Scholar
  44. 44.
    Vardy, A.: Algorithmic complexity in coding theory and the minimum distance problem. In: STOC, pp. 92–109 (1997)Google Scholar
  45. 45.
    Vertigan, D., Whittle, G.: Recognizing polymatroids associated with hypergraphs. Combinatorics, Probability & Computing 2, 519–530 (1993)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fedor V. Fomin
    • 1
  • Dániel Marx
    • 2
  1. 1.Department of InformaticsUniversity of BergenNorway
  2. 2.Computer and Automation Research InstituteHungarian Academy of Sciences (MTA SZTAKI)BudapestHungary

Personalised recommendations