Studies in Computational Aspects of Voting

A Parameterized Complexity Perspective
  • Nadja Betzler
  • Robert Bredereck
  • Jiehua Chen
  • Rolf Niedermeier

Abstract

We review NP-hard voting problems together with their status in terms of parameterized complexity results. In addition, we survey standard techniques for achieving fixed-parameter (in)tractability results in voting.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AB09]
    Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press (2009)Google Scholar
  2. [Ail10]
    Ailon, N.: Aggregation of Partial Rankings, p-Ratings, and Top-m Lists. Algorithmica 57(2), 284–300 (2010)MathSciNetMATHCrossRefGoogle Scholar
  3. [ALS09]
    Alon, N., Lokshtanov, D., Saurabh, S.: Fast FAST. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 49–58. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. [ASS02]
    Arrow, K.J., Sen, A.K., Suzumura, K. (eds.): Handbook of Social Choice and Welfare, vol. 1. North-Holland (2002)Google Scholar
  5. [ASS10]
    Arrow, K.J., Sen, A.K., Suzumura, K. (eds.): Handbook of Social Choice and Welfare, vol. 2. North-Holland (2010)Google Scholar
  6. [AYZ95]
    Alon, N., Yuster, R., Zwick, U.: Color-Coding. Journal of the ACM 42(4), 844–856 (1995)MathSciNetMATHCrossRefGoogle Scholar
  7. [Ban85]
    Banks, J.S.: Sophisticated Voting Outcomes and Agenda Control. Social Choice and Welfare 1(4), 295–306 (1985)MATHCrossRefGoogle Scholar
  8. [BBD09]
    Biedl, T.C., Brandenburg, F.-J., Deng, X.: On the Complexity of Crossings in Permutations. Discrete Mathematics 309(7), 1813–1823 (2009)MathSciNetMATHCrossRefGoogle Scholar
  9. [BBN10]
    Betzler, N., Bredereck, R., Niedermeier, R.: Partial Kernelization for Rank Aggregation: Theory and Experiments. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 26–37. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. [BBNU11]
    Betzler, N., Bredereck, R., Niedermeier, R., Uhlmann, J.: On Making a Distinguished Vertex Minimum Degree by Vertex Deletion. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 123–134. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. [BBNU12]
    Betzler, N., Bredereck, R., Niedermeier, R., Uhlmann, J.: On Bounded-Degree Vertex Deletion Parameterized by Treewidth. Discrete Applied Mathematics 160(1–2), 53–60 (2012)MathSciNetMATHCrossRefGoogle Scholar
  12. [BBS11]
    Brandt, F., Brill, M., Seedig, H.G.: On the Fixed-Parameter Tractability of Composition-Consistent Tournament Solutions. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pp. 85–90. AAAI Press (2011)Google Scholar
  13. [BCE12]
    Brandt, F., Conitzer, V., Endriss, U.: Computational Social Choice. In: Weiss, G. (ed.) Multiagent Systems. MIT Press (2012)Google Scholar
  14. [BD10]
    Betzler, N., Dorn, B.: Towards a Dichotomy of Finding Possible Winners in Elections Based on Scoring Rules. Journal of Computer and System Sciences 76(8), 812–836 (2010)MathSciNetMATHCrossRefGoogle Scholar
  15. [BDFH09]
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On Problems Without Polynomial Kernels. Journal of Computer and System Sciences 75(8), 423–434 (2009)MathSciNetMATHCrossRefGoogle Scholar
  16. [BEH+10]
    Baumeister, D., Erdélyi, G., Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Computational Aspects of Approval Voting. In: Laslier, J.-F., Remzi Sanver, M. (eds.) Handbook on Approval Voting, ch. 10, pp. 199–251. Springer (2010)Google Scholar
  17. [Bet10a]
    Betzler, N.: A Multivariate Complexity Analysis of Voting Problems. PhD thesis, Friedrich-Schiller-Universität Jena (2010)Google Scholar
  18. [Bet10b]
    Betzler, N.: On Problem Kernels for Possible Winner Determination under the k-Approval Protocol. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 114–125. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. [BF02]
    Brams, S., Fishburn, P.C.: Voting Procedures. In: Arrow, K.J., Sen, A.K., Suzumura, K. (eds.) Handbook of Social Choice and Welfare, vol. 1, pp. 173–236. Elsevier (2002)Google Scholar
  20. [BFG+09]
    Betzler, N., Fellows, M.R., Guo, J., Niedermeier, R., Rosamond, F.A.: Fixed-Parameter Algorithms for Kemeny Rankings. Theoretical Computer Science 410, 4554–4570 (2009)MathSciNetMATHCrossRefGoogle Scholar
  21. [BGKN11]
    Betzler, N., Guo, J., Komusiewicz, C., Niedermeier, R.: Average Parameterization and Partial Kernelization for Computing Medians. Journal of Computer and System Sciences 77, 774–789 (2011)MathSciNetMATHCrossRefGoogle Scholar
  22. [BGN10]
    Betzler, N., Guo, J., Niedermeier, R.: Parameterized Computational Complexity of Dodgson and Young Elections. Information and Computation 208(2), 165–177 (2010)MathSciNetMATHCrossRefGoogle Scholar
  23. [BHN09]
    Betzler, N., Hemmann, S., Niedermeier, R.: A Multivariate Complexity Analysis of Determining Possible Winners Given Incomplete Votes. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, pp. 53–58 (2009)Google Scholar
  24. [BNW11]
    Betzler, N., Niedermeier, R., Woeginger, G.J.: Unweighted Coalitional Manipulation Under the Borda Rule is NP-hard. In: Proceedings of 22nd International Joint Conference of Artificial Intelligence, pp. 55–60 (2011)Google Scholar
  25. [BO91]
    Bartholdi III, J.J., Orlin, J.B.: Single Transferable Vote Resists Strategic Voting. Social Choice and Welfare 8, 341–354 (1991)MathSciNetMATHGoogle Scholar
  26. [Bod09]
    Bodlaender, H.L.: Kernelization: New Upper and Lower Bound Techniques. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  27. [BS09]
    Brams, S., Remzi Sanver, M.: Voting Systems that Combine Approval and Preference. In: Brams, S., Gehrlein, W.V., Roberts, F.S. (eds.) The Mathematics of Preference, Choice, and Order: Essays in Honor of Peter C. Fishburn, pp. 215–237. Springer (2009)Google Scholar
  28. [BSU11]
    Betzler, N., Slinko, A., Uhlmann, J.: On the Computation of Fully Proportional Representation (2011) (available at Social Science Research Network)Google Scholar
  29. [BTT89a]
    Bartholdi III, J.J., Tovey, C.A., Trick, M.A.: The Computational Difficulty of Manipulating an Election. Social Choice and Welfare 6(3), 227–241 (1989)MathSciNetMATHCrossRefGoogle Scholar
  30. [BTT89b]
    Bartholdi III, J.J., Tovey, C.A., Trick, M.A.: Voting Schemes for Which It Can Be Difficult to Tell Who Won the Election. Social Choice and Welfare 6(2), 157–165 (1989)MathSciNetMATHCrossRefGoogle Scholar
  31. [BTT92]
    Bartholdi III, J.J., Tovey, C.A., Trick, M.A.: How Hard Is It to Control an Election? Mathematical and Computer Modeling 16(8-9), 27–40 (1992)MathSciNetMATHCrossRefGoogle Scholar
  32. [BTY11]
    Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel Bounds for Disjoint Cycles and Disjoint Paths. Theoretical Computer Science 412(35), 4570–4578 (2011)MathSciNetMATHCrossRefGoogle Scholar
  33. [BU09]
    Betzler, N., Uhlmann, J.: Parameterized Complexity of Candidate Control in Elections and Related Digraph Problems. Theoretical Computer Science 410(52), 5425–5442 (2009)MathSciNetMATHCrossRefGoogle Scholar
  34. [CC83]
    Chamberlin, J.R., Courant, P.N.: Representative Deliberations and Representative Decisions: Proportional Representation and the Borda Rule. American Political Science Review 77(3), 718–733 (1983)CrossRefGoogle Scholar
  35. [CCDF97]
    Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: Advice Classes of Parameterized Tractability. Annals of Pure and Applied Logic 84, 119–138 (1997)MathSciNetMATHCrossRefGoogle Scholar
  36. [CELM07]
    Chevaleyre, Y., Endriss, U., Lang, J., Maudet, N.: A Short Introduction to Computational Social Choice. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 51–69. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  37. [CFRS07]
    Christian, R., Fellows, M., Rosamond, F., Slinko, A.: On Complexity of Lobbying in Multiple Referenda. Review of Economic Design 11(3), 217–224 (2007)MathSciNetMATHCrossRefGoogle Scholar
  38. [CH00]
    Charon, I., Hudry, O.: Slater Orders and Hamiltonian Paths of Tournaments. Electronic Notes in Discrete Mathematics 5, 60–63 (2000)MathSciNetMATHCrossRefGoogle Scholar
  39. [CLM+11]
    Chevaleyre, Y., Lang, J., Maudet, N., Monnot, J., Xia, L.: New Candidates Welcome! Possible Winners with Respect to the Addition of New Candidates. In: CoRR, abs/1111.3690 (2011)Google Scholar
  40. [Con06]
    Conitzer, V.: Computing Slater Rankings Using Similarities among Candidates. In: Proceedings of the 21st AAAI Conference on Artificial Intelligence, pp. 613–619. AAAI Press (2006)Google Scholar
  41. [Con10]
    Conitzer, V.: Making Decisions Based on the Preferences of Multiple Agents. Communications of the ACM 53, 84–94 (2010)CrossRefGoogle Scholar
  42. [Cop51]
    Copeland, A.H.: A ‘Resonable’ Social Welfare Function. Mimeographed (University of Michigan Seminar on Application of Mathematics in Social Science) (1951)Google Scholar
  43. [CRX09]
    Conitzer, V., Rognlie, M., Xia, L.: Preference Functions That Score Rankings and Maximum Likelihood Estimation. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 109–115 (2009)Google Scholar
  44. [CSL07]
    Conitzer, V., Sandholm, T., Lang, J.: When Are Elections with Few Candidates Hard to Manipulate? Journal of the ACM 54, 1–33 (2007)MathSciNetMATHCrossRefGoogle Scholar
  45. [dB81]
    de Borda, J.-C.: Mémoire sur les élections au scrutin. Histoire de l’Académie Royale des Sciences (1781)Google Scholar
  46. [dC85]
    Caritat, M.J.A.N., de Condorcet: Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix. L’Imprimerie Royale, Paris (1785)Google Scholar
  47. [DF99]
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)Google Scholar
  48. [DKNS01a]
    Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank Aggregation Methods for the Web. In: Proceedings of the 10th International Conference on World Wide Web, pp. 613–622. ACM (2001)Google Scholar
  49. [DKNS01b]
    Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank Aggregation Revisited (2001) (manuscript)Google Scholar
  50. [DKNW11]
    Davies, J., Katsirelos, G., Narodytska, N., Walsh, T.: Complexity of and Algorithms for Borda Manipulation. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence, pp. 657–662. AAAI Press (2011)Google Scholar
  51. [DLS09]
    Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through Colors and IDs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  52. [Dod76]
    Dodgson, C.: A Method of Taking Votes on More Than Two Issues. Pamphlet printed by the Clarendon Press, Oxford, and headed (1876) (not yet published)Google Scholar
  53. [DS12]
    Dorn, B., Schlotter, I.: Multivariate Complexity Analysis of Swap Bribery. Algorithmica (2012) (available electronically)Google Scholar
  54. [DT11]
    Downey, R.G., Thilikos, D.M.: Confronting Intractability via Parameters. Computer Science Review 5(4), 279–317 (2011)MATHCrossRefGoogle Scholar
  55. [EF10a]
    Elkind, E., Faliszewski, P.: Approximation Algorithms for Campaign Management. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 473–482. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  56. [EF10b]
    Erdélyi, G., Fellows, M.R.: Parameterized Control Complexity in Bucklin Voting and in Fallback Voting. In: Proceedings of the 3rd International Workshop on Computational Social Choice, pp. 163–174 (2010)Google Scholar
  57. [EFG+09]
    Erdélyi, G., Fernau, H., Goldsmith, J., Mattei, N., Raible, D., Rothe, J.: The Complexity of Probabilistic Lobbying. In: Rossi, F., Tsoukias, A. (eds.) ADT 2009. LNCS, vol. 5783, pp. 86–97. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  58. [EFPR11]
    Erdélyi, G., Fellows, M.R., Piras, L., Rothe, J.: Control Complexity in Bucklin and Fallback Voting. Technical report, arXiv:1103.2230 (2011)Google Scholar
  59. [EFS09]
    Elkind, E., Faliszewski, P., Slinko, A.: Swap Bribery. In: Mavronicolas, M., Papadopoulou, V.G. (eds.) SAGT 2009. LNCS, vol. 5814, pp. 299–310. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  60. [EFS10a]
    Elkind, E., Faliszewski, P., Slinko, A.: Cloning in Elections. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence, pp. 768–773. AAAI Press (2010)Google Scholar
  61. [EFS10b]
    Elkind, E., Faliszewski, P., Slinko, A.: On the Role of Distances in Defining Voting Rules. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, pp. 375–382 (2010)Google Scholar
  62. [ENR09]
    Erdélyi, G., Nowak, M., Rothe, J.: Sincere-Strategy Preference-Based Approval Voting Fully Resists Constructive Control and Broadly Resists Destructive Control. Mathematical Logic Quaterly 55, 425–443 (2009)MathSciNetMATHCrossRefGoogle Scholar
  63. [EPR10]
    Erdélyi, G., Piras, L., Rothe, J.: Control Complexity in Fallback Voting. Technical report, arXiv:1004.3398v1 (2010)Google Scholar
  64. [ER91]
    Ephrati, E., Rosenschein, J.S.: The Clarke Tax as a Consensus Mechanism Among Automated Agents. In: Proceedings of the 9th AAAI Conference on Artificial Intelligence, pp. 173–178. AAAI Press (1991)Google Scholar
  65. [ER97]
    Ephrati, E., Rosenschein, J.S.: A Heuristic Technique for Multi-Agent Planning. Annals of Mathematics and Artificial Intelligence 20(1–4), 13–67 (1997)MathSciNetMATHCrossRefGoogle Scholar
  66. [ER10]
    Erdélyi, G., Rothe, J.: Control Complexity in Fallback Voting. In: Proceedings of Computing: the 16th Australasian Theory Symposium. Australian Computer Society Conferences in Research and Practice in Information Technology Series, pp. 39–48 (2010)Google Scholar
  67. [Fal08]
    Faliszewski, P.: Nonuniform Bribery. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems. International Foundation for Autonomous Agents and Multiagent Systems, pp. 1569–1572 (2008)Google Scholar
  68. [Fel09]
    Fellows, M.: Towards Fully Multivariate Algorithmics: Some New Results and Directions in Parameter Ecology. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp. 2–10. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  69. [FFL+09]
    Fernau, H., Fomin, F.V., Lokshtanov, D., Raible, D., Saurabh, S., Villanger, Y.: Kernel(s) for Problems with No Kernel: On Out-Trees with Many Leaves. In: Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science. LIPIcs, vol. 3, pp. 421–432. Schloss Dagstuhl (2009)Google Scholar
  70. [FFL+10]
    Fernau, H., Fomin, F.V., Lokshtanov, D., Mnich, M., Philip, G., Saurabh, S.: Ranking and Drawing in Subexponential Time. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2010. LNCS, vol. 6460, pp. 337–348. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  71. [FG06]
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)Google Scholar
  72. [FHH09]
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: How Hard Is Bribery in Elections? Journal of Artificial Intelligence Research 35, 485–532 (2009)MathSciNetMATHGoogle Scholar
  73. [FHH10]
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: Using Complexity to Protect Elections. Communications of the ACM 53(11), 74–82 (2010)CrossRefGoogle Scholar
  74. [FHH11]
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: Multimode Control Attacks on Elections. Journal of Artificial Intelligence Research 40, 305–351 (2011)MathSciNetMATHGoogle Scholar
  75. [FHHR09a]
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: A Richer Understanding of the Complexity of Election Systems. In: Fundamental Problems in Computing: Essays in Honor of Professor Daniel J. Rosenkrantz, pp. 375–406 (2009)Google Scholar
  76. [FHHR09b]
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Llull and Copeland Voting Computationally Resist Bribery and Constructive Control. Journal of Artificial Intelligence Research 35, 275–341 (2009)MathSciNetMATHGoogle Scholar
  77. [Fis77]
    Fishburn, P.C.: Condorcet Social Choice Functions. SIAM Journal on Applied Mathematics 33(3), 469–489 (1977)MathSciNetMATHCrossRefGoogle Scholar
  78. [FJL+10]
    Fellows, M.R., Jansen, B., Lokshtanov, D., Rosamond, F.A., Saurabh, S.: Determining the Winner of a Dodgson Election is Hard. In: Proceedings of the 29th Conference on Foundations of Software Technology and Theoretical Computer Science, pp. 459–469. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2010)Google Scholar
  79. [FKS03]
    Fagin, R., Kumar, R., Sivakumar, D.: Efficient Similarity Search and Classification via Rank Aggregation. In: Proceedings of the 22nd ACM SIGMOD International Conference on Management of Data, pp. 301–312. ACM (2003)Google Scholar
  80. [FS11]
    Fortnow, L., Santhanam, R.: Infeasibility of Instance Compression and Succinct PCPs for NP. Journal of Computer and System Sciences 77(1), 91–106 (2011)MathSciNetMATHCrossRefGoogle Scholar
  81. [Gae09]
    Gaertner, W.: A Primer in Social Choice Theory–LSE Perspectives in Economic Analysis, revised edition. Oxford University Press (2009)Google Scholar
  82. [Gib73]
    Gibbard, A.: Manipulation of Voting Schemes: A General Result. Econometrica 41(4), 587–601 (1973)MathSciNetMATHCrossRefGoogle Scholar
  83. [GMN09]
    Guo, J., Moser, H., Niedermeier, R.: Iterative Compression for Exactly Solving NP-Hard Minimization Problems. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 65–80. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  84. [GN07]
    Guo, J., Niedermeier, R.: Invitation to Data Reduction and Problem Kernelization. ACM SIGACT News 38(1), 31–45 (2007)CrossRefGoogle Scholar
  85. [Goo54]
    Goodman, L.A.: On Methods of Amalgamation. In: Thrall, R.M., Coombs, C.H., Davis, R.L. (eds.) Decision Processes, pp. 39–48. John Wiley and Sons, Inc. (1954)Google Scholar
  86. [HHR97]
    Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Exact Analysis of Dodgson Elections: Lewis Caroll’s 1876 Voting System is Complete for Parallel Access to NP. Journal of the ACM 44(6), 806–825 (1997)MathSciNetMATHCrossRefGoogle Scholar
  87. [HHR07]
    Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Anyone but Him: The Complexity of Precluding an Alternative. Artificial Intelligence 171(5-6), 255–285 (2007)MathSciNetMATHCrossRefGoogle Scholar
  88. [HHR09]
    Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Hybrid Elections Broaden Complexity-Theoretic Resistance to Control. Mathematical Logic Quarterly 55(4), 397–424 (2009)MathSciNetMATHCrossRefGoogle Scholar
  89. [HSV05]
    Hemaspaandra, E., Spakowski, H., Vogel, J.: The Complexity of Kemeny Elections. Theoretical Computer Science 349(3), 382–391 (2005)MathSciNetMATHCrossRefGoogle Scholar
  90. [Hud04]
    Hudry, O.: A Note On “Banks Winners in Tournaments Are Difficult to Recognize” by G. J. Woeginger. Social Choice and Welfare 23(1), 113–114 (2004)MathSciNetMATHCrossRefGoogle Scholar
  91. [IP01]
    Impagliazzo, R., Paturi, R.: On the Complexity of k-SAT. Journal of Computer and System Sciences 62, 367–375 (2001)MathSciNetMATHCrossRefGoogle Scholar
  92. [IPZ01]
    Impagliazzo, R., Paturi, R., Zane, F.: Which Problems Have Strongly Exponential Complexity? Journal of Computer and System Sciences 63(4), 512–530 (2001)MathSciNetMATHCrossRefGoogle Scholar
  93. [JSA08]
    Jackson, B.N., Schnable, P.S., Aluru, S.: Consensus Genetic Maps as Median Orders from Inconsistent Sources. IEEE/ACM Transactions on Computational Biology and Bioinformatics 5(2), 161–171 (2008)CrossRefGoogle Scholar
  94. [Kem59]
    Kemeny, J.G.: Mathematics Without Numbers. Daedalus 88, 571–591 (1959)Google Scholar
  95. [KL05]
    Konczak, K., Lang, J.: Voting Procedures with Incomplete Preferences. In: Proceedings of IJCAI 2005 Multidisciplinary Workshop on Advances in Preference Handling, pp. 124–129 (2005)Google Scholar
  96. [KNU11]
    Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Deconstructing Intractability—A Multivariate Complexity Analysis of Interval Constrained Coloring. Journal of Discrete Algorithms 9, 137–151 (2011)MathSciNetMATHCrossRefGoogle Scholar
  97. [KS10]
    Karpinski, M., Schudy, W.: Faster Algorithms for Feedback Arc Set Tournament, Kemeny Rank Aggregation and Betweenness Tournament. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 3–14. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  98. [KT06]
    Kleinberg, J., Tardos, É.: Algorithm Design. Addison-Wesley (2006)Google Scholar
  99. [LB11]
    Lu, T., Boutilier, C.: Budgeted Social Choice: From Consensus to Personalized Decision Making. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pp. 280–286 (2011)Google Scholar
  100. [Len83]
    Lenstra, H.W.: Integer Programming with a Fixed Number of Variables. Mathematics of Operations Research 8(4), 538–548 (1983)MathSciNetMATHCrossRefGoogle Scholar
  101. [Lev75]
    Levenglick, A.: Fair and Reasonable Election Systems. Behavioral Science 20(1), 34–46 (1975)CrossRefGoogle Scholar
  102. [LFZL09]
    Liu, H., Feng, H., Zhu, D., Luan, J.: Parameterized Computational Complexity of Control Problems in Voting Systems. Theoretical Computer Science 410, 2746–2753 (2009)MathSciNetMATHCrossRefGoogle Scholar
  103. [Lok09]
    Lokshtanov, D.: New Methods in Parameterized Algorithms and Complexity. PhD thesis, University of Bergen (2009)Google Scholar
  104. [LR08]
    Lindner, C., Rothe, J.: Fixed-Parameter Tractability and Parameterized Complexity Applied to Problems From Computational Social Choice. In: Supplement in the Mathematical Programming Glossary (October 2008)Google Scholar
  105. [LZ10]
    Liu, H., Zhu, D.: Parameterized Complexity of Control Problems in Maximin Election. Information Processing Letters 110(10), 383–388 (2010)MathSciNetMATHCrossRefGoogle Scholar
  106. [MG06]
    Matoušek, J., Gärtner, B.: Understanding and Using Linear Programming (Universitext). Springer (2006)Google Scholar
  107. [Mon95]
    Monroe, B.L.: Fully Proportional Representation. American Political Science Review 89(4), 925–940 (1995)CrossRefGoogle Scholar
  108. [Mou91]
    Moulin, H.: Axioms of Cooperative Decision Making. Cambridge University Press (1991)Google Scholar
  109. [MR99]
    Mahajan, M., Raman, V.: Parameterizing Above Guaranteed Values: MaxSat and MaxCut. Journal of Algorithms 31(2), 335–354 (1999)MathSciNetMATHCrossRefGoogle Scholar
  110. [MRS09]
    Mahajan, M., Raman, V., Sikdar, S.: Parameterizing Above or Below Guaranteed Values. Journal of Computer and System Sciences 75, 137–153 (2009)MathSciNetMATHCrossRefGoogle Scholar
  111. [MRS11]
    Misra, N., Raman, V., Saurabh, S.: Lower Bounds on Kernelization. Discrete Optimization 8(1), 110–128 (2011)MathSciNetMATHCrossRefGoogle Scholar
  112. [Nie06]
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (February 2006)Google Scholar
  113. [Nie10]
    Niedermeier, R.: Reflections on Multivariate Algorithmics and Problem Parameterization. In: Proceedings of the 27th International Symposium on Theoretical Aspects of Computer Science. LIPIcs, vol. 5, pp. 17–32 (2010)Google Scholar
  114. [Nur87]
    Nurmi, H.: Comparing Voting Systems. Kluwer Academic Publishers (1987)Google Scholar
  115. [Pap94]
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)Google Scholar
  116. [PRVW11]
    Pini, M.S., Rossi, F., Brent Venable, K., Walsh, T.: Incompleteness and Incomparability in Preference Aggregation: Complexity Results. Artificial Intelligence 175, 1272–1289 (2011)MathSciNetMATHCrossRefGoogle Scholar
  117. [PRZ08]
    Procaccia, A.D., Rosenschein, J.S., Zohar, A.: On the Complexity of Achieving Proportional Representation. Social Choice and Welfare 30, 353–362 (2008)MathSciNetMATHCrossRefGoogle Scholar
  118. [RBLR11]
    Rothe, J., Baumeister, D., Lindner, C., Rothe, I.: Einführung in Computational Social Choice: Individuelle Strategien und kollektive Entscheidungen beim Spielen. Spektrum Akademischer Verlag, Wählen und Teilen (2011)Google Scholar
  119. [RS07]
    Raman, V., Saurabh, S.: Improved Fixed Parameter Tractable Algorithms for Two “Edge” Problems: MAXCUT and MAXDAG. Information Processing Letters 104(2), 65–72 (2007)MathSciNetMATHCrossRefGoogle Scholar
  120. [RSV03]
    Rothe, J., Spakowski, H., Vogel, J.: Exact Complexity of the Winner Problem for Young Elections. Theory of Computing Systems 36(4), 375–386 (2003)MathSciNetMATHCrossRefGoogle Scholar
  121. [RSV04]
    Reed, B.A., Smith, K., Vetta, A.: Finding Odd Cycle Transversals. Operations Research Letters 32, 299–301 (2004)MathSciNetMATHCrossRefGoogle Scholar
  122. [Sat75]
    Satterthwaite, M.A.: Strategy-Proofness and Arrow’s Conditions: Existence and Correspondence Theorems for Voting Procedures and Social Welfare Functions. Journal of Economic Theory, 187–217 (1975)Google Scholar
  123. [Scu07]
    Sculley, D.W.: Rank Aggregation for Similar Items. In: Proceedings of the 7th SIAM International Conference on Data Mining, pp. 587–592 (2007)Google Scholar
  124. [SEF11]
    Schlotter, I., Elkind, E., Faliszewski, P.: Campaign Management under Approval-Driven Voting Rules. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence, pp. 726–731. AAAI Press (2011)Google Scholar
  125. [Sim09]
    Simjour, N.: Improved Parameterized Algorithms for the Kemeny Aggregation Problem. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 312–323. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  126. [Sla61]
    Slater, P.: Inconsistencies in a Schedule of Paired Comparisons. Biometrika 48(3-4), 303–312 (1961)CrossRefGoogle Scholar
  127. [Sni08]
    Sniedovich, M.: Wald’s Maximin Model: A Treasure in Disguise! Journal of Risk Finance 9(3), 287–291 (2008)CrossRefGoogle Scholar
  128. [Tay05]
    Taylor, A.D.: Social Choice and the Mathematics of Manipulation. Cambridge University Press (2005)Google Scholar
  129. [Wal49]
    Wald, A.: Statistical Decision Functions. The Annals of Mathematical Statistics 20(2) (1949)Google Scholar
  130. [Wal07]
    Walsh, T.: Uncertainty in Preference Elicitation and Aggregation. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence, pp. 3–8. AAAI Press (2007)Google Scholar
  131. [Woe03]
    Woeginger, G.J.: Banks Winners in Tournaments are Difficult to Recognize. Social Choice and Welfare 20(3), 523–528 (2003)MathSciNetMATHCrossRefGoogle Scholar
  132. [XC11]
    Xia, L., Conitzer, V.: Determining Possible and Necessary Winners under Common Voting Rules Given Partial Orders. Journal of Artificial Intelligence Research 41, 25–67 (2011)MathSciNetMATHGoogle Scholar
  133. [YL78]
    Young, H.P., Levenglick, A.: A Consistent Extension of Condorcet’s Election Principle. SIAM Journal on Applied Mathematics 35(2), 285–300 (1978)MathSciNetMATHCrossRefGoogle Scholar
  134. [You77]
    Young, H.P.: Extending Condorcet’s Rule. Journal of Economic Theory 16, 335–353 (1977)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nadja Betzler
    • 1
  • Robert Bredereck
    • 1
  • Jiehua Chen
    • 1
  • Rolf Niedermeier
    • 1
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTU BerlinGermany

Personalised recommendations