Advertisement

Studies in Computational Aspects of Voting

A Parameterized Complexity Perspective
  • Nadja Betzler
  • Robert Bredereck
  • Jiehua Chen
  • Rolf Niedermeier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7370)

Abstract

We review NP-hard voting problems together with their status in terms of parameterized complexity results. In addition, we survey standard techniques for achieving fixed-parameter (in)tractability results in voting.

Keywords

Social Choice Condorcet Winner Approval Vote Candidate Pair Rank Aggregation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AB09]
    Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press (2009)Google Scholar
  2. [Ail10]
    Ailon, N.: Aggregation of Partial Rankings, p-Ratings, and Top-m Lists. Algorithmica 57(2), 284–300 (2010)MathSciNetMATHCrossRefGoogle Scholar
  3. [ALS09]
    Alon, N., Lokshtanov, D., Saurabh, S.: Fast FAST. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 49–58. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. [ASS02]
    Arrow, K.J., Sen, A.K., Suzumura, K. (eds.): Handbook of Social Choice and Welfare, vol. 1. North-Holland (2002)Google Scholar
  5. [ASS10]
    Arrow, K.J., Sen, A.K., Suzumura, K. (eds.): Handbook of Social Choice and Welfare, vol. 2. North-Holland (2010)Google Scholar
  6. [AYZ95]
    Alon, N., Yuster, R., Zwick, U.: Color-Coding. Journal of the ACM 42(4), 844–856 (1995)MathSciNetMATHCrossRefGoogle Scholar
  7. [Ban85]
    Banks, J.S.: Sophisticated Voting Outcomes and Agenda Control. Social Choice and Welfare 1(4), 295–306 (1985)MATHCrossRefGoogle Scholar
  8. [BBD09]
    Biedl, T.C., Brandenburg, F.-J., Deng, X.: On the Complexity of Crossings in Permutations. Discrete Mathematics 309(7), 1813–1823 (2009)MathSciNetMATHCrossRefGoogle Scholar
  9. [BBN10]
    Betzler, N., Bredereck, R., Niedermeier, R.: Partial Kernelization for Rank Aggregation: Theory and Experiments. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 26–37. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. [BBNU11]
    Betzler, N., Bredereck, R., Niedermeier, R., Uhlmann, J.: On Making a Distinguished Vertex Minimum Degree by Vertex Deletion. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 123–134. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. [BBNU12]
    Betzler, N., Bredereck, R., Niedermeier, R., Uhlmann, J.: On Bounded-Degree Vertex Deletion Parameterized by Treewidth. Discrete Applied Mathematics 160(1–2), 53–60 (2012)MathSciNetMATHCrossRefGoogle Scholar
  12. [BBS11]
    Brandt, F., Brill, M., Seedig, H.G.: On the Fixed-Parameter Tractability of Composition-Consistent Tournament Solutions. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pp. 85–90. AAAI Press (2011)Google Scholar
  13. [BCE12]
    Brandt, F., Conitzer, V., Endriss, U.: Computational Social Choice. In: Weiss, G. (ed.) Multiagent Systems. MIT Press (2012)Google Scholar
  14. [BD10]
    Betzler, N., Dorn, B.: Towards a Dichotomy of Finding Possible Winners in Elections Based on Scoring Rules. Journal of Computer and System Sciences 76(8), 812–836 (2010)MathSciNetMATHCrossRefGoogle Scholar
  15. [BDFH09]
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On Problems Without Polynomial Kernels. Journal of Computer and System Sciences 75(8), 423–434 (2009)MathSciNetMATHCrossRefGoogle Scholar
  16. [BEH+10]
    Baumeister, D., Erdélyi, G., Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Computational Aspects of Approval Voting. In: Laslier, J.-F., Remzi Sanver, M. (eds.) Handbook on Approval Voting, ch. 10, pp. 199–251. Springer (2010)Google Scholar
  17. [Bet10a]
    Betzler, N.: A Multivariate Complexity Analysis of Voting Problems. PhD thesis, Friedrich-Schiller-Universität Jena (2010)Google Scholar
  18. [Bet10b]
    Betzler, N.: On Problem Kernels for Possible Winner Determination under the k-Approval Protocol. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 114–125. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. [BF02]
    Brams, S., Fishburn, P.C.: Voting Procedures. In: Arrow, K.J., Sen, A.K., Suzumura, K. (eds.) Handbook of Social Choice and Welfare, vol. 1, pp. 173–236. Elsevier (2002)Google Scholar
  20. [BFG+09]
    Betzler, N., Fellows, M.R., Guo, J., Niedermeier, R., Rosamond, F.A.: Fixed-Parameter Algorithms for Kemeny Rankings. Theoretical Computer Science 410, 4554–4570 (2009)MathSciNetMATHCrossRefGoogle Scholar
  21. [BGKN11]
    Betzler, N., Guo, J., Komusiewicz, C., Niedermeier, R.: Average Parameterization and Partial Kernelization for Computing Medians. Journal of Computer and System Sciences 77, 774–789 (2011)MathSciNetMATHCrossRefGoogle Scholar
  22. [BGN10]
    Betzler, N., Guo, J., Niedermeier, R.: Parameterized Computational Complexity of Dodgson and Young Elections. Information and Computation 208(2), 165–177 (2010)MathSciNetMATHCrossRefGoogle Scholar
  23. [BHN09]
    Betzler, N., Hemmann, S., Niedermeier, R.: A Multivariate Complexity Analysis of Determining Possible Winners Given Incomplete Votes. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, pp. 53–58 (2009)Google Scholar
  24. [BNW11]
    Betzler, N., Niedermeier, R., Woeginger, G.J.: Unweighted Coalitional Manipulation Under the Borda Rule is NP-hard. In: Proceedings of 22nd International Joint Conference of Artificial Intelligence, pp. 55–60 (2011)Google Scholar
  25. [BO91]
    Bartholdi III, J.J., Orlin, J.B.: Single Transferable Vote Resists Strategic Voting. Social Choice and Welfare 8, 341–354 (1991)MathSciNetMATHGoogle Scholar
  26. [Bod09]
    Bodlaender, H.L.: Kernelization: New Upper and Lower Bound Techniques. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  27. [BS09]
    Brams, S., Remzi Sanver, M.: Voting Systems that Combine Approval and Preference. In: Brams, S., Gehrlein, W.V., Roberts, F.S. (eds.) The Mathematics of Preference, Choice, and Order: Essays in Honor of Peter C. Fishburn, pp. 215–237. Springer (2009)Google Scholar
  28. [BSU11]
    Betzler, N., Slinko, A., Uhlmann, J.: On the Computation of Fully Proportional Representation (2011) (available at Social Science Research Network)Google Scholar
  29. [BTT89a]
    Bartholdi III, J.J., Tovey, C.A., Trick, M.A.: The Computational Difficulty of Manipulating an Election. Social Choice and Welfare 6(3), 227–241 (1989)MathSciNetMATHCrossRefGoogle Scholar
  30. [BTT89b]
    Bartholdi III, J.J., Tovey, C.A., Trick, M.A.: Voting Schemes for Which It Can Be Difficult to Tell Who Won the Election. Social Choice and Welfare 6(2), 157–165 (1989)MathSciNetMATHCrossRefGoogle Scholar
  31. [BTT92]
    Bartholdi III, J.J., Tovey, C.A., Trick, M.A.: How Hard Is It to Control an Election? Mathematical and Computer Modeling 16(8-9), 27–40 (1992)MathSciNetMATHCrossRefGoogle Scholar
  32. [BTY11]
    Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel Bounds for Disjoint Cycles and Disjoint Paths. Theoretical Computer Science 412(35), 4570–4578 (2011)MathSciNetMATHCrossRefGoogle Scholar
  33. [BU09]
    Betzler, N., Uhlmann, J.: Parameterized Complexity of Candidate Control in Elections and Related Digraph Problems. Theoretical Computer Science 410(52), 5425–5442 (2009)MathSciNetMATHCrossRefGoogle Scholar
  34. [CC83]
    Chamberlin, J.R., Courant, P.N.: Representative Deliberations and Representative Decisions: Proportional Representation and the Borda Rule. American Political Science Review 77(3), 718–733 (1983)CrossRefGoogle Scholar
  35. [CCDF97]
    Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: Advice Classes of Parameterized Tractability. Annals of Pure and Applied Logic 84, 119–138 (1997)MathSciNetMATHCrossRefGoogle Scholar
  36. [CELM07]
    Chevaleyre, Y., Endriss, U., Lang, J., Maudet, N.: A Short Introduction to Computational Social Choice. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 51–69. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  37. [CFRS07]
    Christian, R., Fellows, M., Rosamond, F., Slinko, A.: On Complexity of Lobbying in Multiple Referenda. Review of Economic Design 11(3), 217–224 (2007)MathSciNetMATHCrossRefGoogle Scholar
  38. [CH00]
    Charon, I., Hudry, O.: Slater Orders and Hamiltonian Paths of Tournaments. Electronic Notes in Discrete Mathematics 5, 60–63 (2000)MathSciNetMATHCrossRefGoogle Scholar
  39. [CLM+11]
    Chevaleyre, Y., Lang, J., Maudet, N., Monnot, J., Xia, L.: New Candidates Welcome! Possible Winners with Respect to the Addition of New Candidates. In: CoRR, abs/1111.3690 (2011)Google Scholar
  40. [Con06]
    Conitzer, V.: Computing Slater Rankings Using Similarities among Candidates. In: Proceedings of the 21st AAAI Conference on Artificial Intelligence, pp. 613–619. AAAI Press (2006)Google Scholar
  41. [Con10]
    Conitzer, V.: Making Decisions Based on the Preferences of Multiple Agents. Communications of the ACM 53, 84–94 (2010)CrossRefGoogle Scholar
  42. [Cop51]
    Copeland, A.H.: A ‘Resonable’ Social Welfare Function. Mimeographed (University of Michigan Seminar on Application of Mathematics in Social Science) (1951)Google Scholar
  43. [CRX09]
    Conitzer, V., Rognlie, M., Xia, L.: Preference Functions That Score Rankings and Maximum Likelihood Estimation. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 109–115 (2009)Google Scholar
  44. [CSL07]
    Conitzer, V., Sandholm, T., Lang, J.: When Are Elections with Few Candidates Hard to Manipulate? Journal of the ACM 54, 1–33 (2007)MathSciNetMATHCrossRefGoogle Scholar
  45. [dB81]
    de Borda, J.-C.: Mémoire sur les élections au scrutin. Histoire de l’Académie Royale des Sciences (1781)Google Scholar
  46. [dC85]
    Caritat, M.J.A.N., de Condorcet: Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix. L’Imprimerie Royale, Paris (1785)Google Scholar
  47. [DF99]
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)Google Scholar
  48. [DKNS01a]
    Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank Aggregation Methods for the Web. In: Proceedings of the 10th International Conference on World Wide Web, pp. 613–622. ACM (2001)Google Scholar
  49. [DKNS01b]
    Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank Aggregation Revisited (2001) (manuscript)Google Scholar
  50. [DKNW11]
    Davies, J., Katsirelos, G., Narodytska, N., Walsh, T.: Complexity of and Algorithms for Borda Manipulation. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence, pp. 657–662. AAAI Press (2011)Google Scholar
  51. [DLS09]
    Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through Colors and IDs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  52. [Dod76]
    Dodgson, C.: A Method of Taking Votes on More Than Two Issues. Pamphlet printed by the Clarendon Press, Oxford, and headed (1876) (not yet published)Google Scholar
  53. [DS12]
    Dorn, B., Schlotter, I.: Multivariate Complexity Analysis of Swap Bribery. Algorithmica (2012) (available electronically)Google Scholar
  54. [DT11]
    Downey, R.G., Thilikos, D.M.: Confronting Intractability via Parameters. Computer Science Review 5(4), 279–317 (2011)MATHCrossRefGoogle Scholar
  55. [EF10a]
    Elkind, E., Faliszewski, P.: Approximation Algorithms for Campaign Management. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 473–482. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  56. [EF10b]
    Erdélyi, G., Fellows, M.R.: Parameterized Control Complexity in Bucklin Voting and in Fallback Voting. In: Proceedings of the 3rd International Workshop on Computational Social Choice, pp. 163–174 (2010)Google Scholar
  57. [EFG+09]
    Erdélyi, G., Fernau, H., Goldsmith, J., Mattei, N., Raible, D., Rothe, J.: The Complexity of Probabilistic Lobbying. In: Rossi, F., Tsoukias, A. (eds.) ADT 2009. LNCS, vol. 5783, pp. 86–97. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  58. [EFPR11]
    Erdélyi, G., Fellows, M.R., Piras, L., Rothe, J.: Control Complexity in Bucklin and Fallback Voting. Technical report, arXiv:1103.2230 (2011)Google Scholar
  59. [EFS09]
    Elkind, E., Faliszewski, P., Slinko, A.: Swap Bribery. In: Mavronicolas, M., Papadopoulou, V.G. (eds.) SAGT 2009. LNCS, vol. 5814, pp. 299–310. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  60. [EFS10a]
    Elkind, E., Faliszewski, P., Slinko, A.: Cloning in Elections. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence, pp. 768–773. AAAI Press (2010)Google Scholar
  61. [EFS10b]
    Elkind, E., Faliszewski, P., Slinko, A.: On the Role of Distances in Defining Voting Rules. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, pp. 375–382 (2010)Google Scholar
  62. [ENR09]
    Erdélyi, G., Nowak, M., Rothe, J.: Sincere-Strategy Preference-Based Approval Voting Fully Resists Constructive Control and Broadly Resists Destructive Control. Mathematical Logic Quaterly 55, 425–443 (2009)MathSciNetMATHCrossRefGoogle Scholar
  63. [EPR10]
    Erdélyi, G., Piras, L., Rothe, J.: Control Complexity in Fallback Voting. Technical report, arXiv:1004.3398v1 (2010)Google Scholar
  64. [ER91]
    Ephrati, E., Rosenschein, J.S.: The Clarke Tax as a Consensus Mechanism Among Automated Agents. In: Proceedings of the 9th AAAI Conference on Artificial Intelligence, pp. 173–178. AAAI Press (1991)Google Scholar
  65. [ER97]
    Ephrati, E., Rosenschein, J.S.: A Heuristic Technique for Multi-Agent Planning. Annals of Mathematics and Artificial Intelligence 20(1–4), 13–67 (1997)MathSciNetMATHCrossRefGoogle Scholar
  66. [ER10]
    Erdélyi, G., Rothe, J.: Control Complexity in Fallback Voting. In: Proceedings of Computing: the 16th Australasian Theory Symposium. Australian Computer Society Conferences in Research and Practice in Information Technology Series, pp. 39–48 (2010)Google Scholar
  67. [Fal08]
    Faliszewski, P.: Nonuniform Bribery. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems. International Foundation for Autonomous Agents and Multiagent Systems, pp. 1569–1572 (2008)Google Scholar
  68. [Fel09]
    Fellows, M.: Towards Fully Multivariate Algorithmics: Some New Results and Directions in Parameter Ecology. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp. 2–10. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  69. [FFL+09]
    Fernau, H., Fomin, F.V., Lokshtanov, D., Raible, D., Saurabh, S., Villanger, Y.: Kernel(s) for Problems with No Kernel: On Out-Trees with Many Leaves. In: Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science. LIPIcs, vol. 3, pp. 421–432. Schloss Dagstuhl (2009)Google Scholar
  70. [FFL+10]
    Fernau, H., Fomin, F.V., Lokshtanov, D., Mnich, M., Philip, G., Saurabh, S.: Ranking and Drawing in Subexponential Time. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2010. LNCS, vol. 6460, pp. 337–348. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  71. [FG06]
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)Google Scholar
  72. [FHH09]
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: How Hard Is Bribery in Elections? Journal of Artificial Intelligence Research 35, 485–532 (2009)MathSciNetMATHGoogle Scholar
  73. [FHH10]
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: Using Complexity to Protect Elections. Communications of the ACM 53(11), 74–82 (2010)CrossRefGoogle Scholar
  74. [FHH11]
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: Multimode Control Attacks on Elections. Journal of Artificial Intelligence Research 40, 305–351 (2011)MathSciNetMATHGoogle Scholar
  75. [FHHR09a]
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: A Richer Understanding of the Complexity of Election Systems. In: Fundamental Problems in Computing: Essays in Honor of Professor Daniel J. Rosenkrantz, pp. 375–406 (2009)Google Scholar
  76. [FHHR09b]
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Llull and Copeland Voting Computationally Resist Bribery and Constructive Control. Journal of Artificial Intelligence Research 35, 275–341 (2009)MathSciNetMATHGoogle Scholar
  77. [Fis77]
    Fishburn, P.C.: Condorcet Social Choice Functions. SIAM Journal on Applied Mathematics 33(3), 469–489 (1977)MathSciNetMATHCrossRefGoogle Scholar
  78. [FJL+10]
    Fellows, M.R., Jansen, B., Lokshtanov, D., Rosamond, F.A., Saurabh, S.: Determining the Winner of a Dodgson Election is Hard. In: Proceedings of the 29th Conference on Foundations of Software Technology and Theoretical Computer Science, pp. 459–469. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2010)Google Scholar
  79. [FKS03]
    Fagin, R., Kumar, R., Sivakumar, D.: Efficient Similarity Search and Classification via Rank Aggregation. In: Proceedings of the 22nd ACM SIGMOD International Conference on Management of Data, pp. 301–312. ACM (2003)Google Scholar
  80. [FS11]
    Fortnow, L., Santhanam, R.: Infeasibility of Instance Compression and Succinct PCPs for NP. Journal of Computer and System Sciences 77(1), 91–106 (2011)MathSciNetMATHCrossRefGoogle Scholar
  81. [Gae09]
    Gaertner, W.: A Primer in Social Choice Theory–LSE Perspectives in Economic Analysis, revised edition. Oxford University Press (2009)Google Scholar
  82. [Gib73]
    Gibbard, A.: Manipulation of Voting Schemes: A General Result. Econometrica 41(4), 587–601 (1973)MathSciNetMATHCrossRefGoogle Scholar
  83. [GMN09]
    Guo, J., Moser, H., Niedermeier, R.: Iterative Compression for Exactly Solving NP-Hard Minimization Problems. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 65–80. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  84. [GN07]
    Guo, J., Niedermeier, R.: Invitation to Data Reduction and Problem Kernelization. ACM SIGACT News 38(1), 31–45 (2007)CrossRefGoogle Scholar
  85. [Goo54]
    Goodman, L.A.: On Methods of Amalgamation. In: Thrall, R.M., Coombs, C.H., Davis, R.L. (eds.) Decision Processes, pp. 39–48. John Wiley and Sons, Inc. (1954)Google Scholar
  86. [HHR97]
    Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Exact Analysis of Dodgson Elections: Lewis Caroll’s 1876 Voting System is Complete for Parallel Access to NP. Journal of the ACM 44(6), 806–825 (1997)MathSciNetMATHCrossRefGoogle Scholar
  87. [HHR07]
    Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Anyone but Him: The Complexity of Precluding an Alternative. Artificial Intelligence 171(5-6), 255–285 (2007)MathSciNetMATHCrossRefGoogle Scholar
  88. [HHR09]
    Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Hybrid Elections Broaden Complexity-Theoretic Resistance to Control. Mathematical Logic Quarterly 55(4), 397–424 (2009)MathSciNetMATHCrossRefGoogle Scholar
  89. [HSV05]
    Hemaspaandra, E., Spakowski, H., Vogel, J.: The Complexity of Kemeny Elections. Theoretical Computer Science 349(3), 382–391 (2005)MathSciNetMATHCrossRefGoogle Scholar
  90. [Hud04]
    Hudry, O.: A Note On “Banks Winners in Tournaments Are Difficult to Recognize” by G. J. Woeginger. Social Choice and Welfare 23(1), 113–114 (2004)MathSciNetMATHCrossRefGoogle Scholar
  91. [IP01]
    Impagliazzo, R., Paturi, R.: On the Complexity of k-SAT. Journal of Computer and System Sciences 62, 367–375 (2001)MathSciNetMATHCrossRefGoogle Scholar
  92. [IPZ01]
    Impagliazzo, R., Paturi, R., Zane, F.: Which Problems Have Strongly Exponential Complexity? Journal of Computer and System Sciences 63(4), 512–530 (2001)MathSciNetMATHCrossRefGoogle Scholar
  93. [JSA08]
    Jackson, B.N., Schnable, P.S., Aluru, S.: Consensus Genetic Maps as Median Orders from Inconsistent Sources. IEEE/ACM Transactions on Computational Biology and Bioinformatics 5(2), 161–171 (2008)CrossRefGoogle Scholar
  94. [Kem59]
    Kemeny, J.G.: Mathematics Without Numbers. Daedalus 88, 571–591 (1959)Google Scholar
  95. [KL05]
    Konczak, K., Lang, J.: Voting Procedures with Incomplete Preferences. In: Proceedings of IJCAI 2005 Multidisciplinary Workshop on Advances in Preference Handling, pp. 124–129 (2005)Google Scholar
  96. [KNU11]
    Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Deconstructing Intractability—A Multivariate Complexity Analysis of Interval Constrained Coloring. Journal of Discrete Algorithms 9, 137–151 (2011)MathSciNetMATHCrossRefGoogle Scholar
  97. [KS10]
    Karpinski, M., Schudy, W.: Faster Algorithms for Feedback Arc Set Tournament, Kemeny Rank Aggregation and Betweenness Tournament. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 3–14. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  98. [KT06]
    Kleinberg, J., Tardos, É.: Algorithm Design. Addison-Wesley (2006)Google Scholar
  99. [LB11]
    Lu, T., Boutilier, C.: Budgeted Social Choice: From Consensus to Personalized Decision Making. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pp. 280–286 (2011)Google Scholar
  100. [Len83]
    Lenstra, H.W.: Integer Programming with a Fixed Number of Variables. Mathematics of Operations Research 8(4), 538–548 (1983)MathSciNetMATHCrossRefGoogle Scholar
  101. [Lev75]
    Levenglick, A.: Fair and Reasonable Election Systems. Behavioral Science 20(1), 34–46 (1975)CrossRefGoogle Scholar
  102. [LFZL09]
    Liu, H., Feng, H., Zhu, D., Luan, J.: Parameterized Computational Complexity of Control Problems in Voting Systems. Theoretical Computer Science 410, 2746–2753 (2009)MathSciNetMATHCrossRefGoogle Scholar
  103. [Lok09]
    Lokshtanov, D.: New Methods in Parameterized Algorithms and Complexity. PhD thesis, University of Bergen (2009)Google Scholar
  104. [LR08]
    Lindner, C., Rothe, J.: Fixed-Parameter Tractability and Parameterized Complexity Applied to Problems From Computational Social Choice. In: Supplement in the Mathematical Programming Glossary (October 2008)Google Scholar
  105. [LZ10]
    Liu, H., Zhu, D.: Parameterized Complexity of Control Problems in Maximin Election. Information Processing Letters 110(10), 383–388 (2010)MathSciNetMATHCrossRefGoogle Scholar
  106. [MG06]
    Matoušek, J., Gärtner, B.: Understanding and Using Linear Programming (Universitext). Springer (2006)Google Scholar
  107. [Mon95]
    Monroe, B.L.: Fully Proportional Representation. American Political Science Review 89(4), 925–940 (1995)CrossRefGoogle Scholar
  108. [Mou91]
    Moulin, H.: Axioms of Cooperative Decision Making. Cambridge University Press (1991)Google Scholar
  109. [MR99]
    Mahajan, M., Raman, V.: Parameterizing Above Guaranteed Values: MaxSat and MaxCut. Journal of Algorithms 31(2), 335–354 (1999)MathSciNetMATHCrossRefGoogle Scholar
  110. [MRS09]
    Mahajan, M., Raman, V., Sikdar, S.: Parameterizing Above or Below Guaranteed Values. Journal of Computer and System Sciences 75, 137–153 (2009)MathSciNetMATHCrossRefGoogle Scholar
  111. [MRS11]
    Misra, N., Raman, V., Saurabh, S.: Lower Bounds on Kernelization. Discrete Optimization 8(1), 110–128 (2011)MathSciNetMATHCrossRefGoogle Scholar
  112. [Nie06]
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (February 2006)Google Scholar
  113. [Nie10]
    Niedermeier, R.: Reflections on Multivariate Algorithmics and Problem Parameterization. In: Proceedings of the 27th International Symposium on Theoretical Aspects of Computer Science. LIPIcs, vol. 5, pp. 17–32 (2010)Google Scholar
  114. [Nur87]
    Nurmi, H.: Comparing Voting Systems. Kluwer Academic Publishers (1987)Google Scholar
  115. [Pap94]
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)Google Scholar
  116. [PRVW11]
    Pini, M.S., Rossi, F., Brent Venable, K., Walsh, T.: Incompleteness and Incomparability in Preference Aggregation: Complexity Results. Artificial Intelligence 175, 1272–1289 (2011)MathSciNetMATHCrossRefGoogle Scholar
  117. [PRZ08]
    Procaccia, A.D., Rosenschein, J.S., Zohar, A.: On the Complexity of Achieving Proportional Representation. Social Choice and Welfare 30, 353–362 (2008)MathSciNetMATHCrossRefGoogle Scholar
  118. [RBLR11]
    Rothe, J., Baumeister, D., Lindner, C., Rothe, I.: Einführung in Computational Social Choice: Individuelle Strategien und kollektive Entscheidungen beim Spielen. Spektrum Akademischer Verlag, Wählen und Teilen (2011)Google Scholar
  119. [RS07]
    Raman, V., Saurabh, S.: Improved Fixed Parameter Tractable Algorithms for Two “Edge” Problems: MAXCUT and MAXDAG. Information Processing Letters 104(2), 65–72 (2007)MathSciNetMATHCrossRefGoogle Scholar
  120. [RSV03]
    Rothe, J., Spakowski, H., Vogel, J.: Exact Complexity of the Winner Problem for Young Elections. Theory of Computing Systems 36(4), 375–386 (2003)MathSciNetMATHCrossRefGoogle Scholar
  121. [RSV04]
    Reed, B.A., Smith, K., Vetta, A.: Finding Odd Cycle Transversals. Operations Research Letters 32, 299–301 (2004)MathSciNetMATHCrossRefGoogle Scholar
  122. [Sat75]
    Satterthwaite, M.A.: Strategy-Proofness and Arrow’s Conditions: Existence and Correspondence Theorems for Voting Procedures and Social Welfare Functions. Journal of Economic Theory, 187–217 (1975)Google Scholar
  123. [Scu07]
    Sculley, D.W.: Rank Aggregation for Similar Items. In: Proceedings of the 7th SIAM International Conference on Data Mining, pp. 587–592 (2007)Google Scholar
  124. [SEF11]
    Schlotter, I., Elkind, E., Faliszewski, P.: Campaign Management under Approval-Driven Voting Rules. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence, pp. 726–731. AAAI Press (2011)Google Scholar
  125. [Sim09]
    Simjour, N.: Improved Parameterized Algorithms for the Kemeny Aggregation Problem. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 312–323. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  126. [Sla61]
    Slater, P.: Inconsistencies in a Schedule of Paired Comparisons. Biometrika 48(3-4), 303–312 (1961)CrossRefGoogle Scholar
  127. [Sni08]
    Sniedovich, M.: Wald’s Maximin Model: A Treasure in Disguise! Journal of Risk Finance 9(3), 287–291 (2008)CrossRefGoogle Scholar
  128. [Tay05]
    Taylor, A.D.: Social Choice and the Mathematics of Manipulation. Cambridge University Press (2005)Google Scholar
  129. [Wal49]
    Wald, A.: Statistical Decision Functions. The Annals of Mathematical Statistics 20(2) (1949)Google Scholar
  130. [Wal07]
    Walsh, T.: Uncertainty in Preference Elicitation and Aggregation. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence, pp. 3–8. AAAI Press (2007)Google Scholar
  131. [Woe03]
    Woeginger, G.J.: Banks Winners in Tournaments are Difficult to Recognize. Social Choice and Welfare 20(3), 523–528 (2003)MathSciNetMATHCrossRefGoogle Scholar
  132. [XC11]
    Xia, L., Conitzer, V.: Determining Possible and Necessary Winners under Common Voting Rules Given Partial Orders. Journal of Artificial Intelligence Research 41, 25–67 (2011)MathSciNetMATHGoogle Scholar
  133. [YL78]
    Young, H.P., Levenglick, A.: A Consistent Extension of Condorcet’s Election Principle. SIAM Journal on Applied Mathematics 35(2), 285–300 (1978)MathSciNetMATHCrossRefGoogle Scholar
  134. [You77]
    Young, H.P.: Extending Condorcet’s Rule. Journal of Economic Theory 16, 335–353 (1977)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nadja Betzler
    • 1
  • Robert Bredereck
    • 1
  • Jiehua Chen
    • 1
  • Rolf Niedermeier
    • 1
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTU BerlinGermany

Personalised recommendations