Fixed-Parameter Tractability of Treewidth and Pathwidth

  • Hans L. Bodlaender
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7370)

Abstract

In this survey, a number of results on the fixed-parameter tractability of treewidth and pathwidth are discussed. Some emphasis is placed on older results, and proofs that show that treewidth and pathwidth are fixed-parameter tractable. Also, a linear-time algorithm for testing if a graph has pathwidth at most some given constant is discussed in more detail.

Keywords

Planar Graph Dynamic Programming Algorithm Tree Decomposition Combinatorial Theory State Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amir, E.: Approximation algorithms for treewidth. Algorithmica 56, 448–479 (2010)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Andrzejak, A.: An algorithm for the Tutte polynomials of graphs of bounded treewidth. Discrete Mathematics 190, 39–54 (1998)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with bounded decomposability – A survey. BIT 25, 2–23 (1985)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM Journal on Algebraic and Discrete Methods 8, 277–284 (1987)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Arnborg, S., Courcelle, B., Proskurowski, A., Seese, D.: An algebraic theory of graph reduction. Journal of the ACM 40, 1134–1164 (1993)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. Journal of Algorithms 12, 308–340 (1991)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Arnborg, S., Proskurowski, A.: Characterization and recognition of partial 3-trees. SIAM Journal on Algebraic and Discrete Methods 7, 305–314 (1986)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Applied Mathematics 23, 11–24 (1989)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bern, M.W., Lawler, E.L., Wong, A.L.: Linear time computation of optimal subgraphs of decomposable graphs. Journal of Algorithms 8, 216–235 (1987)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Bienstock, D., Langston, M.A.: Algorithmic implications of the graph minor theorem. In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Handbook of Operations Research and Management Science: Network Models, pp. 481–502. North-Holland, Amsterdam (1995)Google Scholar
  11. 11.
    Bienstock, D., Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a forest. Journal of Combinatorial Theory, Series B 52, 274–283 (1991)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Bodlaender, H.L.: Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees. Journal of Algorithms 11, 631–643 (1990)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Bodlaender, H.L.: Improved self-reduction algorithms for graphs with bounded treewidth. Discrete Applied Mathematics 54, 101–115 (1994)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Bodlaender, H.L.: Treewidth: Algorithmic Techniques and Results. In: Privara, I., Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 19–36. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  16. 16.
    Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209, 1–45 (1998)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. Journal of Computer and System Sciences 75, 423–434 (2009)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Bodlaender, H.L., Fellows, M.R., Hallett, M.T., Wareham, H.T., Warnow, T.J.: The hardness of perfect phylogeny, feasible register assignment and other problems on thin colored graphs. Theoretical Computer Science 244, 167–188 (2000)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Bodlaender, H.L., Fellows, M.R., Thilikos, D.M.: Derivation of algorithms for cutwidth and related graph layout parameters. Journal of Computer and System Sciences 75, 231–244 (2009)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (Meta) kernelization. In: Proceedings of the 50th Annual Symposium on Foundations of Computer Science, FOCS 2009, pp. 629–638. IEEE Computer Society (2009)Google Scholar
  21. 21.
    Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating treewidth, pathwidth, frontsize, and minimum elimination tree height. Journal of Algorithms 18, 238–255 (1995)MATHCrossRefGoogle Scholar
  22. 22.
    Bodlaender, H.L., Hagerup, T.: Parallel algorithms with optimal speedup for bounded treewidth. SIAM J. Comput. 27, 1725–1746 (1998)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Preprocessing for Treewidth: A Combinatorial Analysis through Kernelization. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 437–448. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of graphs. Journal of Algorithms 21, 358–402 (1996)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations I. Upper bounds. Information and Computation 208, 259–275 (2010)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations II. Lower bounds. Information and Computation 209, 1103–1119 (2011)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Bodlaender, H.L., Koster, A.M.C.A., Van den Eijkhof, F.: Pre-processing rules for triangulation of probabilistic networks. Computational Intelligence 21(3), 286–305 (2005)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Bodlaender, H.L., Möhring, R.H.: The pathwidth and treewidth of cographs. SIAM Journal on Discrete Mathematics 6, 181–188 (1993)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Bodlaender, H.L., van Antwerpen-de Fluiter, B.: Reduction algorithms for graphs of small treewidth. Information and Computation 167, 86–119 (2001)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Bodlaender, H.L., van Leeuwen, E.J., van Rooij, J.M.M., Vatshelle, M.: Faster Algorithms on Branch and Clique Decompositions. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 174–185. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  31. 31.
    Borie, R.B.: Generation of polynomial-time algorithms for some optimization problems on tree-decomposable graphs. Algorithmica 14, 123–137 (1995)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Borie, R.B., Parker, R.G., Tovey, C.A.: Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica 7, 555–581 (1992)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Borie, R.B., Parker, R.G., Tovey, C.A.: Solving problems on recursively constructed graphs. ACM Computing Surveys 41(4) (2008)Google Scholar
  34. 34.
    Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal separators. SIAM Journal on Computing 31, 212–232 (2001)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theoretical Computer Science 276, 17–32 (2002)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Brown, D.J., Fellows, M.R., Langston, M.A.: Polynomial-time self-reducibility: Theoretical motivations and practical results. International Journal of Computer Mathematics 31, 1–9 (1989)MATHCrossRefGoogle Scholar
  37. 37.
    Cattell, K., Dinneen, M.J., Downey, R.G., Fellows, M.R., Langston, M.A.: On computing graph minor obstruction sets. Theoretical Computer Science 233, 107–127 (2000)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Chaudhuri, S., Zaroliagis, C.D.: Shortest paths in digraphs of small treewidth. Part II: Optimal parallel algorithms. Theoretical Computer Science 203, 205–223 (1998)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Chaudhuri, S., Zaroliagis, C.D.: Shortest paths in digraphs of small treewidth. Part I: Sequential algorithms. Algorithmica 27, 212–226 (2000)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Chen, H.: Quantified constraint satisfaction and bounded treewidth. In: de Mántaras, R.L., Saitta, L. (eds.) Proceedings of the 17th European Conference on Artificial Intelligence, ECAI 2004, pp. 161–165 (2004)Google Scholar
  41. 41.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)MATHGoogle Scholar
  42. 42.
    Courcelle, B.: The monadic second-order logic of graphs I: Recognizable sets of finite graphs. Information and Computation 85, 12–75 (1990)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Courcelle, B.: The monadic second-order logic of graphs V: On closing the gap between definability and recognizability. Theoretical Computer Science 80, 153–202 (1991)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique width. Theoretical Computer Science 33, 125–150 (2000)MathSciNetMATHGoogle Scholar
  45. 45.
    Courcelle, B., Mosbah, M.: Monadic second-order evaluations on tree-decomposable graphs. Theoretical Computer Science 109, 49–82 (1993)MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. In: Proceedings of the 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, pp. 150–159 (2011)Google Scholar
  47. 47.
    Dalmau, V., Kolaitis, P.G., Vardi, M.Y.: Constraint Satisfaction, Bounded Treewidth, and Finite-Variable Logics. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 310–326. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  48. 48.
    Dantsin, E., Wolpert, A.: On Moderately Exponential Time for SAT. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 313–325. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  49. 49.
    de Fluiter, B.: Algorithms for Graphs of Small Treewidth. PhD thesis, Utrecht University (1997)Google Scholar
  50. 50.
    Díaz, J., Serna, M., Thilikos, D.M.: Counting H-colorings of partial k-trees. Theoretical Computer Science 281, 291–309 (2002)MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Diestel, R., Jensen, T.R., Gorbunov, K.Y., Thomassen, C.: Highly connected sets and the excluded grid theorem. Journal of Combinatorial Theory, Series B 75, 61–73 (1999)MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Dorn, F.: Dynamic programming and planarity: Improved tree-decomposition based algorithms. Discrete Applied Mathematics 158, 800–808 (2010)MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms on planar graphs: Exploiting sphere cut decompositions. Algorithmica 58, 790–810 (2010)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)Google Scholar
  55. 55.
    Drucker, A.: New limits to classical and quantum instance compression (preliminary draft) (2012) (manuscript)Google Scholar
  56. 56.
    van den Eijkhof, F., Bodlaender, H.L., Koster, A.M.C.A.: Safe reduction rules for weighted treewidth. Algorithmica 47, 138–158 (2007)MathSciNetMATHGoogle Scholar
  57. 57.
    Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of Bodlaender and Courcelle. In: Proceedings of the 51st Annual Symposium on Foundations of Computer Science, FOCS 2010, pp. 143–152 (2010)Google Scholar
  58. 58.
    Ellis, J.A., Sudborough, I.H., Turner, J.: Graph separation and search number. Report DCS-66-IR, University of Victoria (1987)Google Scholar
  59. 59.
    Feige, U., Hajiaghayi, M., Lee, J.R.: Improved approximation algorithms for minimum weight vertex separators. SIAM Journal on Computing 38, 629–657 (2008)MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Fellows, M.R.: The Robertson-Seymour theorems: A survey of applications. Contemporary Mathematics 89, 1–18 (1989)MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Fellows, M.R., Fomin, F.V., Lokshtanov, D., Rosamond, F., Saurabh, S., Szeider, S., Thomassen, C.: On the complexity of some colorful problems parameterized by treewidth. Information and Control 209, 143–153 (2011)MathSciNetMATHGoogle Scholar
  62. 62.
    Fellows, M.R., Langston, M.A.: Nonconstructive advances in polynomial-time complexity. Information Processing Letters 26, 157–162 (1987)MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Fellows, M.R., Langston, M.A.: Fast Self-reduction Algorithms for Combinatorial Problems of VLSI Design. In: Reif, J.H. (ed.) AWOC 1988. LNCS, vol. 319, pp. 278–287. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  64. 64.
    Fellows, M.R., Langston, M.A.: Nonconstructive tools for proving polynomial-time decidability. Journal of the ACM 35, 727–739 (1988)MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    Fellows, M.R., Langston, M.A.: An analogue of the Myhill-Nerode theorem and its use in computing finite-basis characterizations. In: Proceedings of the 30th Annual Symposium on Foundations of Computer Science, FOCS 1989, pp. 520–525 (1989)Google Scholar
  66. 66.
    Fellows, M.R., Langston, M.A.: On search, decision and the efficiency of polynomial-time algorithms. In: Proceedings of the 21st Annual Symposium on Theory of Computing, STOC 1989, pp. 501–512 (1989)Google Scholar
  67. 67.
    Fellows, M.R., Langston, M.A.: Fast search algorithms for layout permutation problems. International Journal on Computer Aided VLSI Design 3, 325–340 (1991)Google Scholar
  68. 68.
    Fellows, M.R., Langston, M.A.: On well-partial-order theory and its application to combinatorial problems of VLSI design. SIAM Journal on Discrete Mathematics 5, 117–126 (1992)MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    Fellows, M.R., Langston, M.A.: On search, decision and the efficiency of polynomial-time algorithms. Journal of Computer and System Sciences 49, 769–779 (1994)MathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    Fernández-Baca, D., Slutzki, G.: Parametic problems on graphs of bounded treewidth. Journal of Algorithms 16, 408–430 (1994)MATHCrossRefGoogle Scholar
  71. 71.
    Fomin, F.V., Gaspers, S., Saurabh, S., Stepanov, A.A.: On two techniques of combining branching and treewidth. Algorithmica 54, 181–207 (2009)MathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and kernels. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, pp. 503–510 (2010)Google Scholar
  73. 73.
    Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Linear kernels for (connected) dominating set on H-minor-free graphs. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pp. 82–93 (2012)Google Scholar
  74. 74.
    Fomin, F.V., Thilikos, D.M.: New upper bounds on the decomposability of planar graphs. Journal of Graph Theory 51, 53–81 (2006)MathSciNetMATHCrossRefGoogle Scholar
  75. 75.
    Friedman, H., Robertson, N., Seymour, P.D.: The metamathematics of the graph minor theorem. Contemporary Mathematics 65, 229–261 (1987)MathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    Ganian, R., Hliněný, P.: On parse trees and Myhill-Nerode-type tools for handling graphs of bounded rank-width. Discrete Applied Mathematics 158, 851–867 (2010)MathSciNetMATHCrossRefGoogle Scholar
  77. 77.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)MATHGoogle Scholar
  78. 78.
    Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposition methods. Acta Informatica 124, 243–282 (2000)MathSciNetMATHGoogle Scholar
  79. 79.
    Gupta, A., Nishimura, N.: The complexity of subgraph isomorphism for classes of partial k-trees. Theoretical Computer Science 164, 287–298 (1996)MathSciNetMATHCrossRefGoogle Scholar
  80. 80.
    Gustedt, J., Mæhle, O.A., Telle, J.A.: The Treewidth of Java Programs. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, pp. 86–97. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  81. 81.
    Hagerup, T.: Dynamic algorithms for graphs of bounded treewidth. Algorithmica 27, 292–315 (2000)MathSciNetMATHCrossRefGoogle Scholar
  82. 82.
    Hagerup, T., Katajainen, J., Nishimura, N., Ragde, P.: Characterizing multiterminal flow networks and computing flows in networks of small treewidth. Journal of Computer and System Sciences 57, 366–375 (1998)MathSciNetMATHCrossRefGoogle Scholar
  83. 83.
    Hein, A., Koster, A.M.C.A.: An Experimental Evaluation of Treewidth at Most Four Reductions. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 218–229. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  84. 84.
    Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. Journal of Computer and System Sciences 62, 367–375 (2001)MathSciNetMATHCrossRefGoogle Scholar
  85. 85.
    Isobe, S., Zhou, X., Nishizeki, T.: A polynomial-time algorithm for finding total colorings of partial k-trees. International Journal of Foundations of Computer Science 10, 171–194 (1999)MathSciNetMATHCrossRefGoogle Scholar
  86. 86.
    Kabanets, V.: Recognizability Equals Definability for Partial k-Paths. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 805–815. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  87. 87.
    Kaller, D.: Definability equals recognizability of partial 3-trees and k-connected partial k-trees. Algorithmica 27, 348–381 (2000)MathSciNetMATHCrossRefGoogle Scholar
  88. 88.
    Kashem, M.A., Zhou, X., Nishizeki, T.: Algorithms for generalized vertex-rankings of partial k-trees. Theoretical Computer Science 240, 407–427 (2000)MathSciNetMATHCrossRefGoogle Scholar
  89. 89.
    Kinnersley, N.G.: The vertex separation number of a graph equals its path width. Information Processing Letters 42, 345–350 (1992)MathSciNetMATHCrossRefGoogle Scholar
  90. 90.
    Kleinberg, J., Tardos, E.: Algorithm Design. Addison-Wesley, Boston (2005)Google Scholar
  91. 91.
    Kloks, T.: Treewidth. Computations and Approximations. LNCS, vol. 842. Springer, Heidelberg (1994)MATHCrossRefGoogle Scholar
  92. 92.
    Kneis, J., Langer, A., Rossmanith, P.: Courcelle’s theorem - a game-theoretic approach. Discrete Optimization 8(4), 568–594 (2011)MathSciNetMATHCrossRefGoogle Scholar
  93. 93.
    Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: A bound on the pathwidth of sparse graphs with applications to exact algorithms 23, 407–427 (2009)Google Scholar
  94. 94.
    Koster, A.M.C.A., van Hoesel, S.P.M., Kolen, A.W.J.: Solving partial constraint satisfaction problems with tree decomposition. Networks 40(3), 170–180 (2002)MathSciNetMATHCrossRefGoogle Scholar
  95. 95.
    Koutsonas, A., Thilikos, D.M.: Planar feedback vertex set and face cover: combinatorial bounds and subexponential algorithms. Algorithmica 60, 987–1003 (2011)MathSciNetMATHCrossRefGoogle Scholar
  96. 96.
    Lagergren, J.: Efficient parallel algorithms for graphs of bounded tree-width. Journal of Algorithms 20, 20–44 (1996)MathSciNetMATHCrossRefGoogle Scholar
  97. 97.
    Lagergren, J., Arnborg, S.: Finding Minimal Forbidden Minors Using a Finite Congruence. In: Albert, J.L., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 532–543. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  98. 98.
    Lapoire, D.: Recognizability Equals Definability, for Every Set of Graphs of Bounded Tree-width. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 618–628. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  99. 99.
    Lauritzen, S.J., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. The Journal of the Royal Statistical Society, Series B (Methodological) 50, 157–224 (1988)MathSciNetMATHGoogle Scholar
  100. 100.
    Leaver-Fay, A., Liu, Y., Snoeyink, J.: Faster placement of hydrogen atoms in protein structures by dynamic programming. In: Proceedings of the 6th Workshop on Algorithm Engineering and Experimentation and the 1st Workshop on Analytic Algorithmics and Combinatorics, ALENEX/ANALCO 2004, pp. 39–48 (2004)Google Scholar
  101. 101.
    Lengauer, T.: Black-white pebbles and graph separation. Acta Informatica 16, 465–475 (1981)MathSciNetMATHCrossRefGoogle Scholar
  102. 102.
    Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal on Applied Mathematics 36, 177–189 (1979)MathSciNetMATHCrossRefGoogle Scholar
  103. 103.
    Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM Journal on Computing 9, 615–627 (1980)MathSciNetMATHCrossRefGoogle Scholar
  104. 104.
    Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs on bounded treewidth are probably optimal. In: Randall, D. (ed.) Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pp. 777–789 (2011)Google Scholar
  105. 105.
    Makowsky, J.A.: Coloured Tutte polynomials and Kauffman brackets for graphs of bounded tree width. Discrete Applied Mathematics 145, 276–290 (2004)MathSciNetMATHCrossRefGoogle Scholar
  106. 106.
    Mata-Montero, E.: Resilience of partial k-tree networks with edge and node failures. Networks 21, 321–344 (1991)MathSciNetMATHCrossRefGoogle Scholar
  107. 107.
    Matoušek, J., Thomas, R.: Algorithms for finding tree-decompositions of graphs. Journal of Algorithms 12, 1–22 (1991)MathSciNetMATHCrossRefGoogle Scholar
  108. 108.
    McDiarmid, C., Reed, B.: Channel assignment on graphs of bounded treewidth. Discrete Mathematics 273, 183–192 (2003)MathSciNetMATHCrossRefGoogle Scholar
  109. 109.
    Reed, B.: Finding approximate separators and computing tree-width quickly. In: Proceedings of the 24th Annual Symposium on Theory of Computing, STOC 1992, pp. 221–228. ACM Press, New York (1992)Google Scholar
  110. 110.
    Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. Journal of Combinatorial Theory, Series B 35, 39–61 (1983)MathSciNetMATHCrossRefGoogle Scholar
  111. 111.
    Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. Journal of Combinatorial Theory, Series B 36, 49–64 (1984)MathSciNetMATHCrossRefGoogle Scholar
  112. 112.
    Robertson, N., Seymour, P.D.: Graph minors — a survey. In: Anderson, I. (ed.) Surveys in Combinatorics, pp. 153–171. Cambridge Univ. Press (1985)Google Scholar
  113. 113.
    Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. Journal of Algorithms 7, 309–322 (1986)MathSciNetMATHCrossRefGoogle Scholar
  114. 114.
    Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph. Journal of Combinatorial Theory, Series B 41, 92–114 (1986)MathSciNetMATHCrossRefGoogle Scholar
  115. 115.
    Robertson, N., Seymour, P.D.: Graph minors. VI. Disjoint paths across a disc. Journal of Combinatorial Theory, Series B 41, 115–138 (1986)MathSciNetMATHCrossRefGoogle Scholar
  116. 116.
    Robertson, N., Seymour, P.D.: Graph minors. VII. Disjoint paths on a surface. Journal of Combinatorial Theory, Series B 45, 212–254 (1988)MathSciNetMATHCrossRefGoogle Scholar
  117. 117.
    Robertson, N., Seymour, P.D.: Graph minors. IV. Tree-width and well-quasi-ordering. Journal of Combinatorial Theory, Series B 48, 227–254 (1990)MathSciNetMATHCrossRefGoogle Scholar
  118. 118.
    Robertson, N., Seymour, P.D.: Graph minors. IX. Disjoint crossed paths. Journal of Combinatorial Theory, Series B 49, 40–77 (1990)MathSciNetMATHCrossRefGoogle Scholar
  119. 119.
    Robertson, N., Seymour, P.D.: Graph minors. VIII. A Kuratowski theorem for general surfaces. Journal of Combinatorial Theory, Series B 48, 255–288 (1990)MathSciNetMATHCrossRefGoogle Scholar
  120. 120.
    Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-decomposition. Journal of Combinatorial Theory, Series B 52, 153–190 (1991)MathSciNetMATHCrossRefGoogle Scholar
  121. 121.
    Robertson, N., Seymour, P.D.: Graph minors. XXII. Irrelevant vertices in linkage problems (1992) (manuscript) Google Scholar
  122. 122.
    Robertson, N., Seymour, P.D.: Graph minors. XI. Distance on a surface. Journal of Combinatorial Theory, Series B 60, 72–106 (1994)MathSciNetMATHCrossRefGoogle Scholar
  123. 123.
    Robertson, N., Seymour, P.D.: Graph minors. XII. Excluding a non-planar graph. Journal of Combinatorial Theory, Series B 64, 240–272 (1995)MathSciNetMATHCrossRefGoogle Scholar
  124. 124.
    Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. Journal of Combinatorial Theory, Series B 63, 65–110 (1995)MathSciNetMATHCrossRefGoogle Scholar
  125. 125.
    Robertson, N., Seymour, P.D.: Graph minors. XIV. Extending an embedding. Journal of Combinatorial Theory, Series B 65, 23–50 (1995)MathSciNetMATHCrossRefGoogle Scholar
  126. 126.
    Robertson, N., Seymour, P.D.: Graph minors. XV. Giant steps. Journal of Combinatorial Theory, Series B 68, 112–148 (1996)MathSciNetMATHCrossRefGoogle Scholar
  127. 127.
    Robertson, N., Seymour, P.D.: Graph minors. XVII. Taming a vortex. Journal of Combinatorial Theory, Series B 77, 162–210 (1999)MathSciNetMATHCrossRefGoogle Scholar
  128. 128.
    Robertson, N., Seymour, P.D.: Graph minors. XVI. Excluding a non-planar graph. Journal of Combinatorial Theory, Series B 89, 43–76 (2003)MathSciNetMATHCrossRefGoogle Scholar
  129. 129.
    Robertson, N., Seymour, P.D.: Graph minors. XVIII. Tree-decompositions and well-quasi ordering. Journal of Combinatorial Theory, Series B 89, 77–108 (2003)MathSciNetMATHCrossRefGoogle Scholar
  130. 130.
    Robertson, N., Seymour, P.D.: Graph minors. XIX. Well-quasi-ordering on a surface. Journal of Combinatorial Theory, Series B 90, 325–385 (2004)MathSciNetMATHCrossRefGoogle Scholar
  131. 131.
    Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. Journal of Combinatorial Theory, Series B 92, 325–357 (2004)MathSciNetMATHCrossRefGoogle Scholar
  132. 132.
    Robertson, N., Seymour, P.D.: Graph minors. XXI. Graphs with unique linkages. Journal of Combinatorial Theory, Series B 99, 583–616 (2009)MathSciNetMATHCrossRefGoogle Scholar
  133. 133.
    Robertson, N., Seymour, P.D.: Graph minors XXIII. Nash-Williams’ immersion conjecture. Journal of Combinatorial Theory, Series B 100, 181–205 (2010)MathSciNetMATHCrossRefGoogle Scholar
  134. 134.
    Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a planar graph. Journal of Combinatorial Theory, Series B 62, 323–348 (1994)MathSciNetMATHCrossRefGoogle Scholar
  135. 135.
    Sanders, D.P.: On linear recognition of tree-width at most four. SIAM Journal on Discrete Mathematics 9(1), 101–117 (1996)MathSciNetMATHCrossRefGoogle Scholar
  136. 136.
    Sau, I., Thilikos, D.M.: Subexponential parameterized algorithms for degree-constrained subgraph problems on planar graphs. Journal of Discrete Algorithms 8, 330–338 (2010)MathSciNetMATHCrossRefGoogle Scholar
  137. 137.
    Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2), 217–241 (1994)MathSciNetMATHCrossRefGoogle Scholar
  138. 138.
    Telle, J.A., Proskurowski, A.: Algorithms for vertex partitioning problems on partial k-trees. SIAM Journal on Discrete Mathematics 10, 529–550 (1997)MathSciNetMATHCrossRefGoogle Scholar
  139. 139.
    Thilikos, D.M., Serna, M.J., Bodlaender, H.L.: Cutwidth I: A linear time fixed parameter algorithm. Journal of Algorithms 56, 1–24 (2005)MathSciNetMATHCrossRefGoogle Scholar
  140. 140.
    Thilikos, D.M., Serna, M.J., Bodlaender, H.L.: Cutwidth II: Algorithms for partial w-trees of bounded degree. Journal of Algorithms 56, 25–49 (2005)MathSciNetMATHCrossRefGoogle Scholar
  141. 141.
    van Rooij, J.M.M.: Exact exponential-time algorithms for domination problems in graphs. PhD thesis, Department of Computer Science, Utrecht University (2011)Google Scholar
  142. 142.
    van Rooij, J.M.M., Bodlaender, H.L., Rossmanith, P.: Dynamic Programming on Tree Decompositions Using Generalised Fast Subset Convolution. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 566–577. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  143. 143.
    Wimer, T.V.: Linear Algorithms on k-Terminal Graphs. PhD thesis, Dept. of Computer Science, Clemson University (1987)Google Scholar
  144. 144.
    Wimer, T.V., Hedetniemi, S.T., Laskar, R.: A methodology for constructing linear graph algorithms. Congressus Numerantium 50, 43–60 (1985)MathSciNetMATHGoogle Scholar
  145. 145.
    Zhou, X., Fuse, K., Nishizeki, T.: A linear algorithm for finding [g,f]-colorings of partial k-trees. Algorithmica 27, 227–243 (2000)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hans L. Bodlaender
    • 1
  1. 1.Department of Information and Computing SciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations