Modeling the Supervisory Control Theory with Alloy

  • Benoît Fraikin
  • Marc Frappier
  • Richard St-Denis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7316)


Scientific literature reveals that symbolic representation techniques behind some formal methods are attractive to synthesize parts or verify properties of large discrete event systems. They involve, however, complex encoding schemata and fine tuning heuristic parameters in order to translate specific problems into efficient BDD or SAT-based representations. This approach may be too costly when the main goal is to explore a theory, understand by simulation its underlying concepts and computation procedures, and conduct experiments by applying them to small problems. Based on previous work with Alloy on the synthesis of observers and nonblocking supervisors of a system organized hierarchically with a flat state space estimated to 1031 states, this paper investigates more deeply issues raised with its use in the modeling and prototyping of the supervisory control theory, including the application of models to practical problems. This study was conducted in a broader context than just hierarchical control since it embraces various variants of this theory.


Alloy Kodkod bounded model checking SAT-solver supervisory control theory controllability normality N-inference observability observational equivalence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barbeau, M., Custeau, G., St-Denis, R.: An algorithm for computing the mask value of the supremal normal sublanguage of a legal language. IEEE Trans. Automat. Contr. 40, 699–703 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Beyer, D., Noack, A., Lewerentz, C.: Efficient relational calculation for software analysis. IEEE Trans. Soft. Eng. 31, 137–149 (2005)CrossRefGoogle Scholar
  3. 3.
    Chakib, H., Khoumsi, A.: Multi-decision supervisory control: parallel decentralized architectures cooperating for controlling discrete event systems. IEEE Trans. Automat. Contr. 56, 2608–2622 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Claessen, K., Een, N., Sheeran, M., Sórensson, N., Voronov, A., Åkesson, K.: SAT-solving in practice, with a tutorial example from supervisory control. J. Discrete Event Dynamic Systems: Theory and Appl. 19, 495–524 (2009)zbMATHCrossRefGoogle Scholar
  5. 5.
    Côté, D., Fraikin, B., Frappier, M., St-Denis, R.: A SAT-Based Approach for the Construction of Reusable Control System Components. In: Salaün, G., Schätz, B. (eds.) FMICS 2011. LNCS, vol. 6959, pp. 52–67. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Fernandez, J.-C.: An implementation of an efficient algorithm for bisimulation equivalence. Sci. Comput. Program. 13, 219–236 (1990)zbMATHCrossRefGoogle Scholar
  7. 7.
    Hill, R.C., Cury, J.E.R., de Queiroz, M.H., Tilbury, D.M., Lafortune, S.: Multi-level hierarchical interface-based supervisory control. Automatica 46, 1152–1164 (2010)zbMATHCrossRefGoogle Scholar
  8. 8.
    Jackson, D.: Software Abstractions. MIT Press, Cambridge (2006)Google Scholar
  9. 9.
    Kumar, R., Garg, V.K.: Modeling and Control of Logical Discrete Event Systems. Kluwer Academic Publishers, Boston (1995)zbMATHCrossRefGoogle Scholar
  10. 10.
    Kumar, R., Takai, S.: Inference-based ambiguity management in decentralized decision-making: decentralized control of discrete event systems. IEEE Trans. Automat. Contr. 52, 1783–1794 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Li, Y.: Control of vector discrete-event systems. Ph.D. Thesis, Graduate Dept. of Electrical and Computer Engineering, University of Toronto, Toronto, Canada (1991)Google Scholar
  12. 12.
    Ma, C., Wonham, W.M.: Nonblocking Supervisory Control of State Tree Structures. LNCIS, vol. 317. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  13. 13.
    Milner, R.: Communication and Concurrency. Prentice Hall, New York (1989)Google Scholar
  14. 14.
    Ramadge, P.J., Wonham, W.M.: The control of discrete event systems. Proc. of the IEEE 77, 81–98 (1989)CrossRefGoogle Scholar
  15. 15.
    Su, R., van Schuppen, J.H., Rooda, J.E.: Aggregative synthesis of distributed supervisors based on automaton abstraction. IEEE Trans. Automat. Contr. 55, 1627–1640 (2010)CrossRefGoogle Scholar
  16. 16.
    Torlak, E., Jackson, D.: Kodkod: A Relational Model Finder. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Wong, K.C., Wonham, W.M.: Hierarchical control of discrete-event systems. J. Discrete Event Dynamic Systems: Theory and Appl. 6, 241–273 (1996)zbMATHCrossRefGoogle Scholar
  18. 18.
    Wong, K.C., Wonham, W.M.: On the computation of observers in discrete-event systems. J. Discrete Event Dynamic Systems: Theory and Appl. 14, 55–107 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Wonham, W.M., Ramadge, P.J.: On the supremal controllable sublanguage of a given language. SIAM J. Control and Optimization 25, 637–659 (1987)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Benoît Fraikin
    • 1
  • Marc Frappier
    • 1
  • Richard St-Denis
    • 1
  1. 1.Département d’informatiqueUniversité de SherbrookeSherbrookeCanada

Personalised recommendations