Multi-valued Functions in Computability Theory

  • Arno Pauly
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7318)

Abstract

Multi-valued functions are common in computable analysis (built upon the Type 2 Theory of Effectivity), and have made an appearance in complexity theory under the moniker search problems leading to complexity classes such as \(\textrm{PPAD}\) and \(\textrm{PLS}\) being studied. However, a systematic investigation of the resulting degree structures has only been initiated in the former situation so far (the Weihrauch-degrees).

A more general understanding is possible, if the category-theoretic properties of multi-valued functions are taken into account. In the present paper, the category-theoretic framework is established, and it is demonstrated that many-one degrees of multi-valued functions form a distributive lattice under very general conditions, regardless of the actual reducibility notions used (e.g., Cook, Karp, Weihrauch).

Beyond this, an abundance of open questions arises. Some classic results for reductions between functions carry over to multi-valued functions, but others do not. The basic theme here again depends on category-theoretic differences between functions and multi-valued functions.

Keywords

Multi-valued functions many-one reduction Weihrauch reducibility category theory degree structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambos-Spies, K.: Minimal pairs for polynomial time reducibilities. In: Börger, E. (ed.) Computation Theory and Logic. LNCS, vol. 270, pp. 1–13. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  2. 2.
    Brattka, V., de Brecht, M., Pauly, A.: Closed choice and a uniform low basis theorem. Annals of Pure and Applied Logic (2012)Google Scholar
  3. 3.
    Brattka, V., Gherardi, G.: Effective choice and boundedness principles in computable analysis. Journal of Symbolic Logic 76, 143–176 (2011) arXiv:0905.4685Google Scholar
  4. 4.
    Brattka, V., Gherardi, G.: Weihrauch degrees, omniscience principles and weak computability. Bulletin of Symbolic Logic 17, 73–117 (2011) arXiv:0905.4679Google Scholar
  5. 5.
    Brattka, V., Gherardi, G., Marcone, A.: The Bolzano-Weierstrass Theorem is the jump of Weak König’s Lemma. Annals of Pure and Applied Logic 163(6), 623–655 (2012)MATHCrossRefGoogle Scholar
  6. 6.
    Brattka, V., le Roux, S., Pauly, A.: On the Computational Content of the Brouwer Fixed Point Theorem. In: Cooper, S.B., Dawar, A., Löwe, B. (eds.) CiE 2012. LNCS, vol. 7318, pp. 57–68. Springer, Heidelberg (2012)Google Scholar
  7. 7.
    Chen, X., Deng, X.: Settling the complexity of 2-player Nash-equilibrium. Tech. Rep. 134, Electronic Colloquium on Computational Complexity (2005)Google Scholar
  8. 8.
    Daskalakis, C., Papadimitriou, C.: Continuous local search. In: Proceedings of SODA (2011)Google Scholar
  9. 9.
    Di Paola, R., Heller, A.: Dominical categories: Recursion theory without elements. Journal of Symbolic Logic 52, 594–635 (1987)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Gherardi, G., Marcone, A.: How incomputable is the separable Hahn-Banach theorem? Notre Dame Journal of Formal Logic 50(4), 393–425 (2009)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Higuchi, K., Pauly, A.: The degree-structure of Weihrauch-reducibility. arXiv 1101.0112 (2011)Google Scholar
  12. 12.
    Johnson, D.S., Papadimtriou, C.H., Yannakakis, M.: How easy is local search? Journal of Computer and System Sciences 37(1), 79–100 (1988)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Ladner, R.E.: On the structure of polynomial time reducibility. Journal of the ACM 22(1), 155–171 (1975)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence. Journal of Computer and Systems Science 48(3), 498–532 (1994)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Pauly, A.: How incomputable is finding Nash equilibria? Journal of Universal Computer Science 16(18), 2686–2710 (2010)MathSciNetMATHGoogle Scholar
  16. 16.
    Pauly, A.: On the (semi)lattices induced by continuous reducibilities. Mathematical Logic Quarterly 56(5), 488–502 (2010)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Pauly, A.: Many-one reductions between search problems. arXiv 1102.3151 (2011)Google Scholar
  18. 18.
    Pauly, A.: Computable Metamathematics and its Application to Game Theory. Ph.D. thesis, University of Cambridge (2012)Google Scholar
  19. 19.
    Robinson, E., Rosolini, G.: Categories of partial maps. Information and Computation 79(2), 95–130 (1988)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Weihrauch, K.: The degrees of discontinuity of some translators between representations of the real numbers. Informatik Berichte 129, FernUniversität Hagen, Hagen (July 1992)Google Scholar
  21. 21.
    Weihrauch, K.: The TTE-interpretation of three hierarchies of omniscience principles. Informatik Berichte 130, FernUniversität Hagen, Hagen (September 1992)Google Scholar
  22. 22.
    Yates, C.E.M.: A minimal pair of recursively enumerable degrees. The Journal of Symbolic Logic 31(2), 159–168 (1966)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Arno Pauly
    • 1
  1. 1.Clare CollegeUniversity of CambridgeCambridgeUnited Kingdom

Personalised recommendations