On Immortal Configurations in Turing Machines

  • Emmanuel Jeandel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7318)


We investigate the immortality problem for Turing machines and prove that there exists a Turing Machine that is immortal but halts on every recursive configuration. The result is obtained by combining a new proof of Hooper’s theorem [11] with recent results on effective symbolic dynamics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blondel, V.D., Cassaigne, J., Nichitiu, C.: On the presence of periodic configurations in Turing machines and in counter machines. Theoretical Computer Science 289(1), 573–590 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Cenzer, D., Dashti, A., King, J.L.F.: Computable symbolic dynamics. Mathematical Logic Quarterly 54(5), 460–469 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Cenzer, D., Remmel, J.: \(\Pi_1^0\) classes in mathematics. In: Handbook of Recursive Mathematics - Volume 2: Recursive Algebra, Analysis and Combinatorics. Studies in Logic and the Foundations of Mathematics, vol. 2, 139, ch. 13, pp. 623–821. Elsevier (1998)Google Scholar
  4. 4.
    Cenzer, D., Remmel, J.: Effectively Closed Sets. ASL Lecture Notes in Logic (2011) (in preparation)Google Scholar
  5. 5.
    Collins, P., van Schuppen, J.H.: Observability of Hybrid Systems and Turing Machines. In: 43rd IEEE conference on Decision and Control, pp. 7–12 (2004)Google Scholar
  6. 6.
    Delvenne, J.C., Blondel, V.D.: Quasi-periodic configurations and undecidable dynamics for tilings, infinite words and Turing machines. Theoretical Computer Science 319, 127–143 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Hooper, P.K.: The Undecidability of the Turing Machine Immortality Problem. Journal of Symbolic Logic 31(2), 219–234 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Jeandel, E., Vanier, P.: Turing degrees of multidimensional SFTs. submitted to Theoretical Computer Science, arXiv:1108.1012v2Google Scholar
  9. 9.
    Jockusch, C.G., Soare, R.I.: Degrees of members of \(\Pi_1^0\) classes. Pacific J. Math. 40(3), 605–616 (1972)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Kari, J.: A small aperiodic set of Wang tiles. Discrete Mathematics 160, 259–264 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kari, J., Ollinger, N.: Periodicity and Immortality in Reversible Computing. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 419–430. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Kurka, P.: On topological dynamics of Turing machines. Theoretical Computer Science 174, 203–216 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Lind, D.A., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, New York (1995)zbMATHCrossRefGoogle Scholar
  14. 14.
    Miller, J.S.: Two Notes on subshifts. Proceedings of the American Mathematical Society 140(5), 1617–1622 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall (1967)Google Scholar
  16. 16.
    Myers, D.: Non Recursive Tilings of the Plane II. Journal of Symbolic Logic 39(2), 286–294 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Simpson, S.G.: Mass problems associated with effectively closed sets. Tohoku Mathematical Journal 63(4), 489–517 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Simpson, S.G.: Medvedev Degrees of 2-Dimensional Subshifts of Finite Type. Ergodic Theory and Dynamical Systems (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Emmanuel Jeandel
    • 1
  1. 1.Laboratoire d’Informatiquede Robotique et de Microélectronique de Montpellier, UMR 5506Montpellier, Cedex 5France

Personalised recommendations