Advertisement

On Immortal Configurations in Turing Machines

  • Emmanuel Jeandel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7318)

Abstract

We investigate the immortality problem for Turing machines and prove that there exists a Turing Machine that is immortal but halts on every recursive configuration. The result is obtained by combining a new proof of Hooper’s theorem [11] with recent results on effective symbolic dynamics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blondel, V.D., Cassaigne, J., Nichitiu, C.: On the presence of periodic configurations in Turing machines and in counter machines. Theoretical Computer Science 289(1), 573–590 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Cenzer, D., Dashti, A., King, J.L.F.: Computable symbolic dynamics. Mathematical Logic Quarterly 54(5), 460–469 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Cenzer, D., Remmel, J.: \(\Pi_1^0\) classes in mathematics. In: Handbook of Recursive Mathematics - Volume 2: Recursive Algebra, Analysis and Combinatorics. Studies in Logic and the Foundations of Mathematics, vol. 2, 139, ch. 13, pp. 623–821. Elsevier (1998)Google Scholar
  4. 4.
    Cenzer, D., Remmel, J.: Effectively Closed Sets. ASL Lecture Notes in Logic (2011) (in preparation)Google Scholar
  5. 5.
    Collins, P., van Schuppen, J.H.: Observability of Hybrid Systems and Turing Machines. In: 43rd IEEE conference on Decision and Control, pp. 7–12 (2004)Google Scholar
  6. 6.
    Delvenne, J.C., Blondel, V.D.: Quasi-periodic configurations and undecidable dynamics for tilings, infinite words and Turing machines. Theoretical Computer Science 319, 127–143 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Hooper, P.K.: The Undecidability of the Turing Machine Immortality Problem. Journal of Symbolic Logic 31(2), 219–234 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Jeandel, E., Vanier, P.: Turing degrees of multidimensional SFTs. submitted to Theoretical Computer Science, arXiv:1108.1012v2Google Scholar
  9. 9.
    Jockusch, C.G., Soare, R.I.: Degrees of members of \(\Pi_1^0\) classes. Pacific J. Math. 40(3), 605–616 (1972)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Kari, J.: A small aperiodic set of Wang tiles. Discrete Mathematics 160, 259–264 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kari, J., Ollinger, N.: Periodicity and Immortality in Reversible Computing. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 419–430. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Kurka, P.: On topological dynamics of Turing machines. Theoretical Computer Science 174, 203–216 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Lind, D.A., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, New York (1995)zbMATHCrossRefGoogle Scholar
  14. 14.
    Miller, J.S.: Two Notes on subshifts. Proceedings of the American Mathematical Society 140(5), 1617–1622 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall (1967)Google Scholar
  16. 16.
    Myers, D.: Non Recursive Tilings of the Plane II. Journal of Symbolic Logic 39(2), 286–294 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Simpson, S.G.: Mass problems associated with effectively closed sets. Tohoku Mathematical Journal 63(4), 489–517 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Simpson, S.G.: Medvedev Degrees of 2-Dimensional Subshifts of Finite Type. Ergodic Theory and Dynamical Systems (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Emmanuel Jeandel
    • 1
  1. 1.Laboratoire d’Informatiquede Robotique et de Microélectronique de Montpellier, UMR 5506Montpellier, Cedex 5France

Personalised recommendations