NP-Hardness and Fixed-Parameter Tractability of Realizing Degree Sequences with Directed Acyclic Graphs

  • Sepp Hartung
  • André Nichterlein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7318)

Abstract

In graph realization problems one is given a degree sequence and the task is to decide whether there is a graph whose vertex degrees match the given sequence. This realization problem is known to be polynomial-time solvable when the graph is directed or undirected. In contrast, we show NP-completeness for the problem of realizing a given sequence of pairs of positive integers (representing indegrees and outdegrees) with a directed acyclic graph, answering an open question of Berger and Müller-Hannemann [FCT 2011]. Furthermore, we classify the problem as fixed-parameter tractable with respect to the parameter “maximum degree”.

Keywords

graph realization problems combinatorial algorithms parameterized complexity realizing topological orderings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berger, A., Müller-Hannemann, M.: Dag Realizations of Directed Degree Sequences. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 264–275. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Berger, A., Müller-Hannemann, M.: How to Attack the NP-Complete Dag Realization Problem in Practice. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 51–62. Springer, Heidelberg (2012)Google Scholar
  3. 3.
    Chen, W.K.: On the realization of a (p,s)-digraph with prescribed degrees. J. Franklin Inst. 281(5), 406–422 (1966)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)Google Scholar
  5. 5.
    Erdős, P., Gallai, T.: Graphs with prescribed degrees of vertices. Math. Lapok 11, 264–274 (1960) (in Hungarian)Google Scholar
  6. 6.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)Google Scholar
  7. 7.
    Fulkerson, D.: Zero-one matrices with zero trace. Pacific J. Math. 10(3), 831–836 (1960)MathSciNetMATHGoogle Scholar
  8. 8.
    Gale, D.: A theorem on flows in networks. Pacific J. Math. 7, 1073–1082 (1957)MathSciNetMATHGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman (1979)Google Scholar
  10. 10.
    Hakimi, S.: On realizability of a set of integers as degrees of the vertices of a linear graph. i. J. SIAM 10(3), 496–506 (1962)MathSciNetMATHGoogle Scholar
  11. 11.
    Havel, V.: A remark on the existence of finite graphs. Casopis Pest. Mat. 80, 477–480 (1955)MathSciNetMATHGoogle Scholar
  12. 12.
    Hulett, H., Will, T.G., Woeginger, G.J.: Multigraph realizations of degree sequences: Maximization is easy, minimization is hard. Oper. Res. Lett. 36(5), 594–596 (2008)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Kleitman, D., Wang, D.: Algorithms for constructing graphs and digraphs with given valences and factors. SIAM J. Discrete Math. 6(1), 79–88 (1973)MathSciNetMATHGoogle Scholar
  14. 14.
    Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Deconstructing intractability—a multivariate complexity analysis of interval constrained coloring. J. Discrete Algorithms 9(1), 137–151 (2011)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)Google Scholar
  16. 16.
    Niedermeier, R.: Reflections on multivariate algorithmics and problem parameterization. In: Proc. 27th STACS. LIPIcs, vol. 5, pp. 17–32. IBFI Dagstuhl, Germany (2010)Google Scholar
  17. 17.
    Ryser, H.: Combinatorial properties of matrices of zeros and ones. Canadian J. Math. 9, 371–377 (1957)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sepp Hartung
    • 1
  • André Nichterlein
    • 1
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTechnische Universität BerlinBerlinGermany

Personalised recommendations