Turing Machine-Inspired Computer Science Results

  • Juris Hartmanis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7318)


This paper discusses how the Turing machine model directly inspired and guided developments in theoretical computer science. In particular, the Turing machine model was ideal for the creation of computational complexity theory, which has grown into an essential part of theoretical computer science and has found application in other disciplines. The machine operation count was used to define time-bounded computations and the tape squares used defined the tape or memory-bounded computations. The definition and exploration of the corresponding asymptotic complexity classes followed naturally.


Turing Machine Complexity Class Theoretical Computer Science Computable Number Computational Complexity Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bar-Hillel, Y., Perlis, M., Shamir, E.: On formal properties of simple phrase structure grammars. Z. Phonetik, Sprachwissen. Komm. 14, 143–172 (1961)zbMATHGoogle Scholar
  2. 2.
    Blum, M.: A machine-independent theory of the complexity of recursive functions. J. Assoc. Comput. Mach. 14(2), 322–336 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Blum, M.: On effective procedures for speeding up algorithms. J. Assoc. Comput. Mach. 18(2), 290–305 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Borodin, A.B.: Computational complexity and the existence of complexity gaps. J. Assoc. Comput. Mach. 19(1), 158–174 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Cocke, J., Schwartz, J.T.: Programming languages and their compilers: Preliminary notes. Tech. rep., Courant Institute (1970)Google Scholar
  6. 6.
    Cook, S.A.: The complexity of theorem proving procedures. In: Proc. 3rd Symp. Theory of Computing, pp. 151–158. ACM, New York (1971)Google Scholar
  7. 7.
    Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms. Trans. Amer. Math. Soc. 117, 285–306 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Hartmanis, J.: Context-free languages and Turing machine computations. J. Symbolic Logic 37(4), 759 (1972)Google Scholar
  9. 9.
    Hartmanis, J., Simon, J.: On the power of multiplciation in random-access machines. In: Proc. 15th Annu. IEEE Sympos. Switching Automata Theory, pp. 13–23 (1974)Google Scholar
  10. 10.
    Immerman, N.: Nondeterministic space is closed under complement. SIAM J. Comput. 17, 935–938 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kasami, T.: An efficient recognition and syntax algorithm for context-free languages. Tech. Rep. AFCRL-65-758, Air Force Cambridge Research Lab (1965)Google Scholar
  12. 12.
    Pratt, V.R., Rabin, M.O., Stockmeyer, L.J.: A characterization of the power of vector machines. In: Proc. ACM Symp. Theory of Computation (STOC 1974), pp. 122–134 (1974)Google Scholar
  13. 13.
    Savitch, W.: Relationship between nondeterministic and deterministic tape complexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Stearns, R., Hartmanis, J., Lewis, R.: Hierarchies of memory limited computations. In: Proc. IEEE Conf. Switching Circuit Theory and Logical Design, pp. 179–190 (1965)Google Scholar
  16. 16.
    Szelepcsényi, R.: The method of forcing for nondeterministic automata. Bull. EATCS 33, 96–100 (1987)zbMATHGoogle Scholar
  17. 17.
    Turing, A.M.: On computable numbers with an application to the Entscheidungsproblem. Proc. London Math. Soc. 42, 230–265 (1936); erratum: Ibid. 43, 544–546 (1937)CrossRefGoogle Scholar
  18. 18.
    Yamada, H.: Real-time computation and recursive functions not real-time computable. IEEE Trans. Electronic Computers EC-11(6), 753–760 (1962)CrossRefGoogle Scholar
  19. 19.
    Younger, D.H.: Recognition and parsing of context-free languages in time n 3. Information and Control 10(2), 189–208 (1967)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Juris Hartmanis
    • 1
  1. 1.Department of Computer ScienceCornell UniversityIthacaUnited States of America

Personalised recommendations