Complexity of Deep Inference via Atomic Flows

  • Anupam Das
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7318)

Abstract

We consider the fragment of deep inference free of compression mechanisms and compare its proof complexity to other systems, utilising ‘atomic flows’ to examine size of proofs. Results include a simulation of Resolution and dag-like cut-free Gentzen, as well as a separation from bounded-depth Frege.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brünnler, K., Tiu, A.F.: A local system for classical logic (2001); preprint (WV-01-02) (2001)Google Scholar
  2. 2.
    Bruscoli, P., Guglielmi, A.: On the proof complexity of deep inference. ACM Transactions on Computational Logic 10(2), article 14, 1–34 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bruscoli, P., Guglielmi, A., Gundersen, T., Parigot, M.: Quasipolynomial normalisation in deep inference via atomic flows and threshold formulae (2009) (submitted)Google Scholar
  4. 4.
    Buss, S.R.: Polynomial size proofs of the propositional pigeonhole principle. Journal of Symbolic Logic 52(4), 916–927 (1987)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Clote, P., Kranakis, E.: Boolean Functions and Computation Models. Springer (2002)Google Scholar
  6. 6.
    D’Agostino, M.: Are tableaux an improvement on truth-tables? Journal of Logic, Language and Information 1, 235–252 (1992)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Das, A.: On the Proof Complexity of Cut-Free Bounded Deep Inference. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS, vol. 6793, pp. 134–148. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Das, A.: Complexity of deep inference via atomic flows (2012)(preprint)Google Scholar
  9. 9.
    Guglielmi, A.: Resolution in the calculus of structures (2003) (preprint)Google Scholar
  10. 10.
    Guglielmi, A., Gundersen, T.: Normalisation control in deep inference via atomic flows II (2008) (preprint)Google Scholar
  11. 11.
    Gundersen, T.: A General View of Normalisation Through Atomic Flows. Ph.D. thesis, University of Bath (2009)Google Scholar
  12. 12.
    Jeřábek, E.: Proof complexity of the cut-free calculus of structures. Journal of Logic and Computation 19(2), 323–339 (2009)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Krajíček, J.: On the weak pigeonhole principle (2001)Google Scholar
  14. 14.
    Krajíček, J., Pudlák, P., Woods, A.: An exponential lower bound to the size of bounded depth frege proofs of the pigeonhole principle. Random Structures & Algorithms 7(1), 15–39 (1995)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Pitassi, T., Beame, P., Impagliazzo, R.: Exponential lower bounds for the pigeonhole principle. Computational Complexity 3, 97–140 (1993)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Troelstra, A., Schwichtenberg, H.: Basic Proof Theory. Cambridge Tracts in Theoretical Computer Science, vol. 43. Cambridge University Press (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anupam Das
    • 1
  1. 1.Department of Computer ScienceUniversity of BathClaverton DownUnited Kingdom

Personalised recommendations