A Note on Ramsey Theorems and Turing Jumps

  • Lorenzo Carlucci
  • Konrad Zdanowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7318)


We give a new treatment of the relations between Ramsey’s Theorem, ACA 0 and ACA 0′. First we combine a result by Girard with a colouring used by Loebl and Nešetril for the analysis of the Paris-Harrington principle to obtain a short combinatorial proof of ACA 0 from Ramsey Theorem for triples. We then extend this approach to ACA 0′ using a characterization of this system in terms of preservation of well-orderings due to Marcone and Montalbán. We finally discuss how to apply this method to \(\mathbf{ACA}_0^+\) using an extension of Ramsey’s Theorem for colouring relatively large sets due to Pudlàk and Rödl and independently to Farmaki.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Afshari, B., Rathjen, M.: Reverse Mathematics and well-ordering principles: a pilot study. Ann. Pure Appl. Log. 160(3), 231–237 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Carlucci, L., Zdanowski, K.: The strength of Ramsey Theorem for colouring relatively large sets,
  3. 3.
    Farmaki, V., Negrepontis, S.: Schreier Sets in Ramsey Theory. Trans. Am. Math. Soc. 360(2), 849–880 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Girard, J.-Y.: Proof Theory and Logical Complexity. Biblipolis, Naples (1987)Google Scholar
  5. 5.
    Harrington, L., Paris, J.: A mathematical incompleteness in Peano Arithmetic. In: Barwise, J. (ed.) Handbook of Mathematical Logic, pp. 1133–1142. North-Holland (1977)Google Scholar
  6. 6.
    Hirst, J.: Reverse Mathematics and ordinal exponentiation. Ann. Pure App. Log. 66(1), 1–18 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Jockusch Jr., C.G.: Ramsey’s Theorem and Recursion Theory. J. Symb. Log. 37(2), 268–280 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Loebl, M., Nešetřil, J.: An unprovable Ramsey-type theorem. Proc. Am. Math. Soc. 116(3), 819–824 (1992)zbMATHCrossRefGoogle Scholar
  9. 9.
    Marcone, A., Montalbàn, A.: The Veblen function for computability theorists. J. Symb. Log. 76(2), 575–602 (2011)zbMATHCrossRefGoogle Scholar
  10. 10.
    McAloon, K.: Paris-Harrington incompleteness and transfinite progressions of theories. In: Nerode, A., Shore, R.A. (eds.) Recursion Theory. Proceedings of Symposia in Pure Mathematics, vol. 42, pp. 447–460. American Mathematical Society (1985)Google Scholar
  11. 11.
    Pudlàk, P., Rödl, V.: Partition theorems for systems of finite subsets of integers. Discret. Math. 39(1), 67–73 (1982)zbMATHCrossRefGoogle Scholar
  12. 12.
    Simpson, S.G.: Subsystems of Second Order Arithmetic. Springer (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lorenzo Carlucci
    • 1
  • Konrad Zdanowski
    • 2
  1. 1.Dipartimento di InformaticaUniversità di Roma SapienzaRomaItaly
  2. 2.Uniwersytet Kardynała Stefana Wyszyńskiego w WarszawieWarszawaPoland

Personalised recommendations