Advertisement

Personalization of the Workplace through a Proximity Detection System Using User’s Profiles

  • Carolina ZatoEmail author
  • Alejandro Sánchez
  • Gabriel Villarrubia
  • Javier Bajo
  • Sara Rodríguez
  • Juan F. De Paz
Conference paper
  • 2.1k Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 172)

Abstract

This article presents a proximity detection prototype that will be included in the future in an integral system primarily oriented to facilitate the labor integration of people with disabilities. The main goal of the prototype is to detect the proximity of a person to a computer using ZigBee technology and then, to personalize its workplace according to his user’s profile. The system has been developed as an open MultiAgent System architecture using the agent’s platform PANGEA, a Platform for Automatic coNstruction of orGanizations of intElligent Agents.

Keywords

proximity detection Zigbee RTLS open MAS agent platform personalization user’s profiles disabled people 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Huang, Y., Pang, A.: A Comprehensive Study of Low-power Operation in IEEE 802.15.4. In: Proceeding of the 10th ACM Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems, s.n., Chaina (2007)Google Scholar
  2. 2.
    Singh, C.K., et al.: Performance evaluation of an IEEE 802.15.4 Sensor Network with a Star Topology (2008)Google Scholar
  3. 3.
    Universidad Pontificia de Salamanca. [En línea] (2011), http://www.youtube.com/watch?v=9iYX-xney6E
  4. 4.
    Lieberman, P.: Wake on LAN Technology, White paper (2011), http://www.liebsoft.com/pdfs/Wake_On_LAN.pdf
  5. 5.
    ZigBee Standards Organization: ZigBee Specification Document 053474r13. ZigBee Alliance (2006)Google Scholar
  6. 6.
    Tapia, D.I., De Paz, Y., Bajo, J.: Ambient Intelligence Based Architecture for Automated Dynamic Environments. In: Borrajo, D., Juan, L.C., Corchado, M. (eds.) CAEPIA 2007, vol. 2, pp. 151–180 (2011)Google Scholar
  7. 7.
    Nedevschi, S., Chandrashekar, J., Liu, J., Nordman, B., Ratnasamy, S., Taft, N.: Skilled in the art of being idle: reducing energy waste in networked systems. In: Proceedings of the 6th USENIX Symposium on Networked Systems Design and Implementation, Boston, Massachusetts, April 22-24, pp. 381–394 (2009)Google Scholar
  8. 8.
    Agent Oriented Software Pty Ltd. JACKTM Intelligent Agents Teams Manual. s.l.: Agent Oriented Software Pty. Ltd. (2005)Google Scholar
  9. 9.
    Hübner, J.F.: J -Moise+ Programming organisational agents with Moise+ & Jason. Technical Fora Group at EUMAS 2007 (2007)Google Scholar
  10. 10.
    Giret, A., Julián, V., Rebollo, M., Argente, E., Carrascosa, C., Botti, V.: An Open Architecture for Service-Oriented Virtual Organizations. In: Braubach, L., Briot, J.-P., Thangarajah, J. (eds.) ProMAS 2009. LNCS, vol. 5919, pp. 118–132. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Galland, S.: JANUS: Another Yet General-Purpose Multiagent Platform. Seventh AOSE Technical Forum, Paris (2010)Google Scholar
  12. 12.
    Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of Wireless Indoor Positioning Techniques and Systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 37(6), 1067–1080 (2007)CrossRefGoogle Scholar
  13. 13.
    Tapia, D.I., De Paz, J.F., Rodríguez, S., Bajo, J., Corchado, J.M.: Multi-Agent System for Security Control on Industrial Environments. International Transactions on System Science and Applications Journal 4(3), 222–226 (2008)Google Scholar
  14. 14.
    Tapia, D.I., Bajo, J., De Paz, J.F., Alonso, R.S., Rodríguez, S., Corchado, J.M.: Corchado Using Multi-Layer Perceptrons to Enhance the Performance of Indoor RTLS. In: Progress in Artificial Intelligence - EPIA 2011. Workshop: Ambient Intelligence Environmets (2011)Google Scholar
  15. 15.
    Pluke, M., Petersen, F., Brown, W.: Personalization and User Profile Management for Public Internet Access Points (PIAPs). CiteSeerX Scientific Literature Digital Library. Online Resource (July 2009), doi: 10.1.1.117.8111Google Scholar
  16. 16.
    Carretero, N., Bermejo, A.B.: Inteligencia Ambiental. CEDITEC: Centro de Difusión de Tecnologías, Universidad Politécnica de Madrid, España (2005)Google Scholar
  17. 17.
    Corchado, J.M., Bajo, J., Abraham, A.: GERAmI: Improving the delivery of health care. IEEE Intelligent Systems 23(2), 19–25 (2008)CrossRefGoogle Scholar
  18. 18.
    Macarro, A., Bajo, J., Jiménez, A., de la Prieta, F., Corchado, J.M.: Learning System to Facilitate Integration through Ligthweigth Devices. In: Proceedings FUSION 2011, Chicago, US (2011) ISBN: 978-0-9824438-1-1Google Scholar
  19. 19.
    Anastasopoulos, M., Niebuhr, D., Bartelt, C., Koch, J., Rausch, A.: Towards a Reference Middleware Architecture for Ambient Intelligence Systems. In: ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications (2005)Google Scholar
  20. 20.
    Ranganathan, V.K., Siemionow, V., Sahgal, V., Yue, G.H.: Effects of aging on hand function. Journal of the American Geriatrics Society 49, 1478–1484 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Carolina Zato
    • 1
    Email author
  • Alejandro Sánchez
    • 1
  • Gabriel Villarrubia
    • 1
  • Javier Bajo
    • 1
  • Sara Rodríguez
    • 1
  • Juan F. De Paz
    • 1
  1. 1.Departamento Informática y AutomáticaUniversidad de SalamancaSalamancaSpain

Personalised recommendations