Advertisement

Cloud-IO: Cloud Computing Platform for the Fast Deployment of Services over Wireless Sensor Networks

  • Dante I. TapiaEmail author
  • Ricardo S. Alonso
  • Óscar García
  • Fernando de la Prieta
  • Belén Pérez-Lancho
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 172)

Abstract

In the recent years, a new computing model, known as Cloud Computing, has emerged to react to the explosive growth of the number of devices connected to Internet. Cloud Computing is centered on the user and offers an efficient, secure and elastically scalable way of providing and acquiring services. Likewise, Ambient Intelligence (AmI) is also an emerging paradigm based on ubiquitous computing that proposes new ways of interaction between humans and machines, making technology adapt to the users’ necessities. One of the most important aspects in AmI is the use of context-aware technologies such as Wireless Sensor Networks (WSN) to perceive stimuli from both the users and the environment. In this regard, this paper presents Cloud-IO, a Cloud Computing platform for the fast integration and deployment of services over WSNs.

Keywords

Cloud Computing Ambient Intelligence Wireless Sensor Networks Multi-Agent Systems Real-Time Locating Systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarts, E., de Ruyter, B.: New research perspectives on Ambient Intelligence. J. Ambient Intell. Smart Environ. 1, 5–14 (2009)Google Scholar
  2. 2.
    Sadri, F.: Ambient intelligence: A survey. ACM Comput. Surv. 43, 36:1–36:66 (2011)CrossRefGoogle Scholar
  3. 3.
    Rodríguez, S., Tapia, D.I., Sanz, E., Zato, C., de la Prieta, F., Gil, O.: Cloud Computing Integrated into Service-Oriented Multi-Agent Architecture. In: Ortiz, Á., Franco, R.D., Gasquet, P.G. (eds.) BASYS 2010. IFIP AICT, vol. 322, pp. 251–259. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Wooldridge, M.: An Introduction to MultiAgent Systems, 2nd edn. Wiley (2009)Google Scholar
  5. 5.
    Cuřín, J., Kleindienst, J.: SitCom: Virtual Smart-Room Environment for Multi-modal Perceptual Systems. In: Nguyen, N.T., Borzemski, L., Grzech, A., Ali, M. (eds.) IEA/AIE 2008. LNCS (LNAI), vol. 5027, pp. 476–485. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Corchado, J.M., Bajo, J., de Paz, Y., Tapia, D.I.: Intelligent environment for monitoring Alzheimer patients, agent technology for health care. Decision Support Systems 44, 382–396 (2008)CrossRefGoogle Scholar
  7. 7.
    Marston, S., Li, Z., Bandyopadhyay, S., et al.: Cloud computing — The business perspective. Decision Support Systems 51, 176–189 (2011)CrossRefGoogle Scholar
  8. 8.
    Baronti, P., Pillai, P., Chook, V.W.C., Chessa, S., Gotta, A., Hu, Y.F.: Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards. Comput. Commun. 30(7), 1655–1695 (2007)CrossRefGoogle Scholar
  9. 9.
    Sarangapani, J.: Wireless Ad hoc and Sensor Networks: Protocols, Performance, and Control, 1st edn. CRC (2007)Google Scholar
  10. 10.
    Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of Wireless Indoor Positioning Techniques and Systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 37, 1067–1080 (2007)CrossRefGoogle Scholar
  11. 11.
    Corchado, J.M., Bajo, J., Tapia, D.I., Abraham, A.: Using Heterogeneous Wireless Sensor Networks in a Telemonitoring System for Healthcare. IEEE Transactions on Information Technology in Biomedicine 14, 234–240 (2010)CrossRefGoogle Scholar
  12. 12.
    Zissis, D., Lekkas, D.: Addressing cloud computing security issues. Future Generation Computer Systems 28, 583–592 (2012)CrossRefGoogle Scholar
  13. 13.
    Vera, R., Ochoa, S.F., Aldunate, R.G.: EDIPS: an Easy to Deploy Indoor Positioning System to support loosely coupled mobile work. Personal and Ubiquitous Computing 15, 365–376 (2011)CrossRefGoogle Scholar
  14. 14.
    Jurik, A.D., Weaver, A.C.: Remote Medical Monitoring. Computer 41, 96–99 (2008)CrossRefGoogle Scholar
  15. 15.
    Tapia, D.I., Alonso, R.S., De Paz, J.F., Zato, C., de la Prieta, F.: A Telemonitoring System for Healthcare Using Heterogeneous Wireless Sensor Networks. International Journal of Artificial Intelligence 6, 112–128 (2011)Google Scholar
  16. 16.
    Wang, C., Sohraby, K., Jana, R., et al.: Voice communications over zigbee networks. IEEE Communications Magazine 46, 121–127 (2008)CrossRefGoogle Scholar
  17. 17.
    Arbanowski, S., Lange, L., Magedanz, T., Thiem, L.: The Dynamic Composition of Personal Network Services for Service Delivery Platforms. In: 4th IEEE International Conference on Circuits and Systems for Communications, ICCSC 2008, pp. 455–460 (2008)Google Scholar
  18. 18.
    Kolli, S., Zawodniok, M.: A dynamic programming approach: Improving the performance of wireless networks. Journal of Parallel and Distributed Computing 71, 1447–1459 (2011)zbMATHCrossRefGoogle Scholar
  19. 19.
    Khattak, A.M., Truc, P.T.H., Hung, L.X., et al.: Towards Smart Homes Using Low Level Sensory Data. Sensors (Basel) 11, 11581–11604 (2011)CrossRefGoogle Scholar
  20. 20.
    Patel, S.V., Pandey, K.: Design of SOA Based Framework for Collaborative Cloud Computing in Wireless Sensor Networks. International Journal of Grid and High Performance Computing 2, 60–73 (2010)CrossRefGoogle Scholar
  21. 21.
    Russell, S.J., Norvig, P., Canny, J.F., et al.: Artificial intelligence: a modern approach. Prentice Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  22. 22.
    Ahmad, I., Kamruzzaman, J., Habibi, D.: Application of artificial intelligence to improve quality of service in computer networks. Neural Computing and Applications 21, 81–90 (2011)CrossRefGoogle Scholar
  23. 23.
    Masten, M.K., Panahi, I.: Digital signal processors for modern control systems. Control Engineering Practice 5, 449–458 (1997)CrossRefGoogle Scholar
  24. 24.
    Cerami, E.: Web Services Essentials: Distributed Applications with XML-RPC, SOAP, UDDI & WSDL, 1st edn. O’Reilly Media, Inc. (2002)Google Scholar
  25. 25.
    Fryazinov, O., Pasko, A., Adzhiev, V.: BSP-fields: An exact representation of polygonal objects by differentiable scalar fields based on binary space partitioning. Computer-Aided Design 43, 265–277 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dante I. Tapia
    • 1
    Email author
  • Ricardo S. Alonso
    • 1
  • Óscar García
    • 1
  • Fernando de la Prieta
    • 2
  • Belén Pérez-Lancho
    • 2
  1. 1.R&D DepartmentNebusens, S.L., Scientific Park of the University of SalamancaVillamayor de la ArmuñaSpain
  2. 2.Department of Computer Science and AutomationUniversity of SalamancaSalamancaSpain

Personalised recommendations