Advertisement

Impact of Initial Tuning for Algorithm That Solve Query Routing

  • Claudia Gómez SantillánEmail author
  • Laura Cruz Reyes
  • Gilberto Rivera Zarate
  • Juan González Barbosa
  • Marcela Quiroz Castellanos
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 171)

Abstract

The algorithms are the most common form of problem solving in many science fields. Algorithms include parameters that need to be tuned with the objective of optimizing its processes. This work uses Hoeffding race techniques, with the objective to obtain the best initial combination of variables to use it as an input configuration. Hoeffding race quickly discard less promising candidates as soon as there are evidences enough to remove them from the competition. These evidences are based on the use of any statistical test that, at a given confidence level, would set a range of expected performance for configuration. All the experiment was applied in AdaNAS (Adaptive Neighboring-Ant Search), an algorithm that was developed to route queries through the Internet. Our results show that there is a significant gain in efficiency of the AdaNAS algorithm by using the simple, but powerful, technique of initial setting of parameters presented in this paper. In our experiments, the average efficiency was improved 50% by using a good initial configuration.

Keywords

Algorithms Optimization Parameter Setting Race Techniques Ant Algorithms Query Routing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adenso-Díaz, B., Laguna, M.: Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search. Operation Research, 99–114 (2004)Google Scholar
  2. 2.
    Maron, O., Moore, A.: Hoeffding Races: Accelerating Model Selection Search for Classification and Function Approximation. In: Advances in Neural Information Processing System, vol. 6, pp. 59–66 (1994)Google Scholar
  3. 3.
    Maron, O., Moore, A.: The Racing Algorithm: Model Selection for Lazy Learners. Artificial Intelligent Review 11, 193–225 (1997)CrossRefGoogle Scholar
  4. 4.
    Birattari, M., Stutzle, T.: A Racing algorithm for Configuring Metaheuristics. Artificial Life, 11–18 (2002)Google Scholar
  5. 5.
    Gómez, C.: Afinación Estática Global de Redes Complejas y Control Dinámico Local de la Función Tiempo de Vida en el Proceso de Direccionamiento de Consultas Semánticas, Doctoral Thesis, Instituto Politécnico Nacional, México (2010)Google Scholar
  6. 6.
    Gómez, C., et al.: A Self Adaptive Ant Colony System for Semantic Query Routing Problem. Computación y Sistemas, Revista Iberoamericana de Computación 13(4) (2010), ISSN 1405-5546Google Scholar
  7. 7.
    Aguirre, M.: Algoritmo de Búsqueda Semántica en Redes P2P Complejas. Master Thesis, Instituto Tecnológico de Ciudad Madero (2008)Google Scholar
  8. 8.
    Michlmayr, E.: Ant Algorithms for Self-Organization in Social Networks. Doctoral Thesis, Women’s Postgraduate College for Internet Technologies (WIT), Institute of Software Technology and Interactive Systems, Vienna University of Technology (2007)Google Scholar
  9. 9.
    Michalewicz, Z.: How to solve it: Modern Heuristics. Springer, NY (2000)zbMATHGoogle Scholar
  10. 10.
    Angeline, P.: Adaptative and Self-Adaptative Evolutionary Computations. IEEE Computational Intelligence, 152–163 (1995)Google Scholar
  11. 11.
    Montgomery, D.C.: Design and Analysis of Experiments. John Wiley & Sons, New York (2001)Google Scholar
  12. 12.
    Barr, R., Golden, J., Kelly, M.: Designing and Reporting Computational Experiments with Heuristics Methods. Journal of Heuristics 1, 9–32 (1995)zbMATHCrossRefGoogle Scholar
  13. 13.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press (2004)Google Scholar
  14. 14.
    Sakaryan, G.: A Content-Oriented Approach to Topology Evolution and Search in Peer-to-Peer Systems, PhD Thesis, University of Rostock, Germany (2004)Google Scholar
  15. 15.
    Pérez, V.: Modelado Causal del Desempeño de Algoritmos Metaheurísticos en Problemas de Distribución de Objetos. Master Thesis, Instituto Tecnológico de Ciudad Madero (2007)Google Scholar
  16. 16.
    Quiroz, M.: Caracterización de Factores de Desempeño de Algoritmos de Solución de BPP. Master Thesis, Instituto Tecnológico de Ciudad Madero (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Claudia Gómez Santillán
    • 1
    Email author
  • Laura Cruz Reyes
    • 1
  • Gilberto Rivera Zarate
    • 1
  • Juan González Barbosa
    • 1
  • Marcela Quiroz Castellanos
    • 1
  1. 1.Instituto Tecnológico de Ciudad MaderoCiudad MaderoMéxico

Personalised recommendations