Computational Modeling of Angiogenesis: Towards a Multi-Scale Understanding of Cell–Cell and Cell–Matrix Interactions

  • Sonja E. M. Boas
  • Margriet M. Palm
  • Pieter Koolwijk
  • Roeland M. H. MerksEmail author
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 12)


Combined with in vitro and in vivo experiments, mathematical and computational modeling are key to unraveling how mechanical and chemical signaling by endothelial cells coordinates their organization into capillary-like tubes. While in vitro and in vivo experiments can unveil the effects of, for example, environmental changes or gene knockouts, computational models provide a way to formalize and understand the mechanisms underlying these observations. This chapter reviews recent computational approaches to model angiogenesis, and discusses the insights they provide into the mechanisms of angiogenesis. We introduce a new cell-based computational model of an in vitro assay of angiogenic sprouting from endothelial monolayers in fibrin matrices. Endothelial cells are modeled by the Cellular Potts Model, combined with continuum descriptions to model haptotaxis and proteolysis of the extracellular matrix. The computational model demonstrates how a variety of cellular structural properties and behaviors determine the dynamics of tube formation. We aim to extend this model to a multi-scale model in the sense that cells, extracellular matrix and cell-regulation are described at different levels of detail and feedback on each other. Finally we discuss how computational modeling, combined with in vitro and in vivo modeling steers experiments, and how it generates new experimental hypotheses and insights on the mechanics of angiogenesis.


Proteolytic Enzyme Network Formation Stalk Cell Proteolytic Enzyme Secretion Fibrin Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Indiana University and the Biocomplexity Institute for providing the CC3D modeling environment. This work was cofinanced by the Netherlands Consortium for Systems Biology (NCSB) which is part of the Netherlands Genomics Initiative/Netherlands organization for Scientific Research and by the Netherlands Institute of Regenerative Medicine. The investigations were (in part) supported by the Division for Earth and Life Sciences (ALW) with financial aid from the Netherlands Organization for Scientific Research (NWO).


  1. 1.
    Koolwijk, P., van Erck, M., de Vree, W., Vermeer, M., Weich, H., Hanemaaijer, R., van Hinsbergh, V.: Cooperative effect of TNFalpha bFGF and VEGF on the formation of tubular structures of human microvascular endothelial cells in a fibrin matrix. Role of urokinase activity. J. Cell Biol. 132(6), 1177–1188 (1996)CrossRefGoogle Scholar
  2. 2.
    Anderson, A., Chaplain, M.: A mathematical model for capillary network formation in the absence of endothelial cell proliferation. Appl. Math. Lett. 11(3), 109–114 (1998)CrossRefzbMATHGoogle Scholar
  3. 3.
    Manoussaki, D., Lubkin, S., Vemon, R., Murray, J.: A mechanical model for the formation of vascular networks in vitro. Acta Biotheor. 44(3), 271–282 (1996)CrossRefGoogle Scholar
  4. 4.
    Namy, P., Ohayon, J., Tracqui, P.: Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. J. Theor. Biol. 227, 103–120 (2004)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Serini, G., Ambrosi, D., Giraudo, E., Gamba, A., Preziosi, L., Bussolino, F.: Modeling the early stages of vascular network assembly. EMBO J. 22, 1771–1779 (2003)CrossRefGoogle Scholar
  6. 6.
    Anderson, A., Chaplain, M.: Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60(5), 857–899 (1998). doi: 10.1006/bulm.1998.0042 CrossRefzbMATHGoogle Scholar
  7. 7.
    Szabó, A., Perryn, E., Czirok, A.: Network formation of tissue cells via preferential attraction to elongated structures. Phys. Rev. Lett. 98(3), 038102 (2007)CrossRefGoogle Scholar
  8. 8.
    Jackson, T., Zheng, X.: A Cell-based Model of Endothelial Cell Migration Proliferation and Maturation During Corneal Angiogenesis. Bull. Math. Biol. (2010). doi: 10.1007/s11538-009-9471-1
  9. 9.
    Szabó, A., Mehes, E., Kosa, E., Czirók, A.: Multicellular sprouting in vitro. Biophys. J. 95(6), 2702–2710 (2008). doi: 10.1529/biophysj.108.129668 CrossRefGoogle Scholar
  10. 10.
    Szabó, A., Czirók, A.: The role of cell-cell adhesion in the formation of multicellular sprouts. Math. Model. Nat. Phenom. 5 (1) (2010). doi: 10.1051/mmnp/20105105
  11. 11.
    Bauer, A., Jackson, T., Jiang, Y.: A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys. J. 92(9), 3105–3121 (2007)CrossRefGoogle Scholar
  12. 12.
    Bentley, K., Gerhardt, H., Bates, P.: Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation. J. Theor. Biol. 250(1), 25–36 (2008). doi: 10.1016/j.jtbi.2007.09.015 CrossRefGoogle Scholar
  13. 13.
    Merks, R., Brodsky, S., Goligorksy, M., Newman, S., Glazier, J.: Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev. Biol. 289, 44–54 (2006)CrossRefGoogle Scholar
  14. 14.
    Merks, R., Perryn, E., Shirinifard, A., Glazier, J.: Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput. Biol. 4(9), e1000163 (2008)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Vernon, R., Angello, J., Iruela-Arispe, M., Lane, T., Sage, E.: Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab. Invest. 66(5), 536 (1992)Google Scholar
  16. 16.
    Vailhé, B., Ronot, X., Tracqui, P., Usson, Y., Tranqui, L.: in vitro angiogenesis is modulated by the mechanical properties of fibrin gels and is related to alpha(v)beta3 integrin localization. in vitro Cell. Dev. An. 33(10), 763–73 (1997). Google Scholar
  17. 17.
    Gamba, A., Ambrosi, D., Coniglio, A., de Candia, A., di Talia, S., Giraudo, E., Serini, G., Preziosi, L., Bussolino, F.: Percolation morphogenesis and Burgers dynamics in blood vessels formation. Phys. Rev. Lett. 90(11), 118101 (2003)CrossRefGoogle Scholar
  18. 18.
    Tosin, A., Ambrosi, D., Preziosi, L.: Mechanics and chemotaxis in the morphogenesis of vascular networks. Bull. Math. Biol. 68(7), 1819–1836 (2006). doi: 10.1007/s11538-006-9071-2 CrossRefMathSciNetGoogle Scholar
  19. 19.
    Ambrosi, D., Gamba, A., Serini, G.: Cell directional persistence and chemotaxis in vascular morphogenesis. Bull. Math. Biol. 66(6), 1851–1873 (2004). doi: 10.1016/j.bulm.2004.04.004 CrossRefMathSciNetGoogle Scholar
  20. 20.
    Merks, R., Koolwijk, P.: Modeling morphogenesis in silico and in vitro: towards quantitative predictive cell-based modeling. Math. Model. Nat. Phenom. 4(4), 149–171 (2009). doi: 10.1051/mmnp/20094406 CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Merks, R., Glazier, J.: A cell-centered approach to developmental biology. Phys. A 352(1), 113–130 (2005)CrossRefGoogle Scholar
  22. 22.
    Merks, R., Newman, S., Glazier, J.: Cell-oriented modeling of in vitro capillary development. In: Sloot, P., Chopard, B., Hoekstra, A. (eds.) Cellular Automata Lecture Notes in Computer Science, pp. 425–434. Springer Berlin, Heidelberg (2004)Google Scholar
  23. 23.
    Merks, R., Glazier, J.: Dynamic mechanisms of blood vessel growth. Nonlinearity 19(1), C1–C10 (2006)Google Scholar
  24. 24.
    Dejana, E.: Endothelial cell-cell junctions: happy together. Nat. Rev. Mol. Cell Biol. 5, 261–270 (2004)CrossRefGoogle Scholar
  25. 25.
    Hillen, F., Griffioen, A.: Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev. 26(3–4), 489–502 (2007). doi: 10.1007/s10555-007-9094-7 CrossRefGoogle Scholar
  26. 26.
    Sholley, M., Ferguson, G., Seibel, H., Montour, J., Wilson, J.: Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells. Lab. Invest. 51(6), 624 (1984)Google Scholar
  27. 27.
    Bauer, A., Jackson, T., Jiang, Y.: Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS Comput. Biol. 5(7), e1000, 445 (2009). doi: 10.1371/journal.pcbi.1000445
  28. 28.
    Hellström, M., Phng, L., Hofmann, J., Wallgard, E., Coultas, L., Lindblom, P., Alva, J., Nilsson, A., Karlsson, L., Gaiano, N., Yoon, K., Rossant, J., Iruela-Arispe, M., Kalé n, M., Gerhardt, H., Betsholtz, C.: Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129), 776–80 (2007). doi: 10.1038/nature05571 CrossRefGoogle Scholar
  29. 29.
    Bentley, K., Mariggi, G., Gerhardt, H., Bates, P.: Tipping the balance: robustness of tip cell selection migration and fusion in angiogenesis. PLoS Comput. Biol. 5(10), e1000549 (2009). doi: 10.1371/journal.pcbi.1000549
  30. 30.
    Jakobsson, L., Franco, C., Bentley, K., Collins, R., Ponsioen, B., Aspalter, I., Rosewell, I., Busse, M., Thurston, G., Medvinsky, A., Schulte-Merker, S., Gerhardt, H.: Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12(10), 943–953 (2010). doi: 10.1038/ncb2103 CrossRefGoogle Scholar
  31. 31.
    Fisher, A., Chien, S., Barakat, A.: Endothelial cellular response to altered shear stress . Am. J. Physiol. Lung. C. 281(3), L529–L533 (2001).
  32. 32.
    McDougall, S., Anderson, A., Chaplain, M.: Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J. Theor. Biol. 241(3), 564–589 (2006). doi: 10.1016/j.jtbi.2005.12.022 CrossRefMathSciNetGoogle Scholar
  33. 33.
    Qutub, A., Mac Gabhann, F., Karagiannis, E., Vempati, P., Popel, A.: Multiscale models of angiogenesis. IEEE Eng. Med. Biol. 28(2), 14–31 (2009)CrossRefGoogle Scholar
  34. 34.
    Qutub, A., Popel, A.: Elongation proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting. BMC Syst. Biol. 3(1), 13 (2009)CrossRefGoogle Scholar
  35. 35.
    Qutub, A., Liu, G., Vempati, P., Popel, A.: Integration of angiogenesis modules at multiple scales: from molecular to tissue. In: Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, p. 316. NIH Public Access (2009)Google Scholar
  36. 36.
    Liu, G., Qutub, A., Vempati, P., Mac Gabhann, F., Popel, A.: Module-based multiscale simulation of angiogenesis in skeletal muscle. Theor. Biol. Med. Modell. 8(1), 6 (2011). doi: 10.1186/1742-4682-8-6 CrossRefGoogle Scholar
  37. 37.
    Shirinifard, A., Gens, J., Zaitlen, B., Popawski, N., Swat, M., Glazier, J.: 3D multi-cell simulation of tumor growth and angiogenesis. PLoS one 4 (10) (2009). doi: 10.1371/journal.pone.0007190
  38. 38.
    van Hinsbergh, V., Koolwijk, P.: Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc. Res. 78(2), 203 (2008)CrossRefGoogle Scholar
  39. 39.
    Glazier, J., Graner, F.: Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E: Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 47(3), 2128–2154 (1993)CrossRefGoogle Scholar
  40. 40.
    Graner, F., Glazier, J.: Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69(13), 2013–2016 (1992)CrossRefGoogle Scholar
  41. 41.
    Swat, M., Hester, S., Heiland, R., Zaitlen, B., Glazier, J., Shirinifard, A.: CompuCell3D manual and tutorial version 3.6.0 (2011)Google Scholar
  42. 42.
    Savill, N.: Modelling morphogenesis: from single cells to crawling slugs. J. Theor. Biol. 184((3), 229–235 (1996). doi: 10.1006/jtbi.1996.0237 Google Scholar
  43. 43.
    Collen, A., Koolwijk, P., Kroon, M., van Hinsbergh, V.: Influence of fibrin structure on the formation and maintenance of capillary-like tubules by human microvascular endothelial cells. Angiogenesis 2(2), 153–166 (1998)CrossRefGoogle Scholar
  44. 44.
    Weijers, E., van Wijhe, M., Joosten, L., Horrevoets, A., de Maat, M., van Hinsbergh, V., Koolwijk, P.: Molecular weight fibrinogen variants alter gene expression and functional characteristics of human endothelial cells. J. Thromb. Haemostasis 8(12), 2800–2809 (2010)CrossRefGoogle Scholar
  45. 45.
    Montesano, R., Pepper, M., Möhle-Steinlein, U., Risau, W., Wagner, E., Orci, L.: Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene. Cell 62(3), 435–445 (1990)CrossRefGoogle Scholar
  46. 46.
    Kroon, M., Koolwijk, P., van Goor, H., Weidle, U., Collen, A., VanDer Pluijm, G., van Hinsbergh, V.: Role and localization of urokinase receptor in the formation of new microvascular structures in fibrin matrices. Am. J. Pathol. 154(6), 1731 (1999)CrossRefGoogle Scholar
  47. 47.
    Kaijzel, E., Koolwijk, P., van Erck, M., van Hinsbergh, V., de Maat, M.: Molecular weight fibrinogen variants determine angiogenesis rate in a fibrin matrix in vitro and in vivo. J. Thromb. Haemostasis 4(9), 1975–1981 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sonja E. M. Boas
    • 1
    • 2
  • Margriet M. Palm
    • 1
    • 2
  • Pieter Koolwijk
    • 3
  • Roeland M. H. Merks
    • 1
    • 2
    Email author
  1. 1.Centrum Wiskunde and InformaticaAmsterdamThe Netherlands
  2. 2.Netherlands Consortium for Systems BiologyNetherlands Institute for Systems BiologyAmsterdamThe Netherlands
  3. 3.VU University Medical CenterAmsterdamThe Netherlands

Personalised recommendations