Candidate Sets for Alternative Routes in Road Networks

  • Dennis Luxen
  • Dennis Schieferdecker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7276)


We present a fast algorithm with preprocessing for computing multiple good alternative routes in road networks. Our approach is based on single via node routing on top of Contraction Hierarchies and achieves superior quality and efficiency compared to previous methods. The algorithm has neglectable memory overhead.


Short Path Road Network Boundary Node Alternative Path Choice Route 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1, 269–271 (1959)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Transact. on Syst. Sci. and Cybernetics 4 (1968)Google Scholar
  3. 3.
    Goldberg, A.V., Harrelson, C.: Computing the Shortest Path: A* Search Meets Graph Theory. In: Proceedings of the 16th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA 2005). SIAM (2005)Google Scholar
  4. 4.
    Lauther, U.: Slow preprocessing of graphs for extremely fast shortest path calculations. In: Workshop on Computational Integer Programming at ZIB (1997)Google Scholar
  5. 5.
    Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static networks with geographical background. Geoinformation und Mobilität—von der Forschung zur praktischen Anwendung 22, 219–230 (2004)Google Scholar
  6. 6.
    Möhring, R.H., Schilling, H., Schütz, B., Wagner, D., Willhalm, T.: Partitioning graphs to speedup dijkstra’s algorithm. J. Exp. Algorithmics 11 (2007)Google Scholar
  7. 7.
    Köhler, E., Möhring, R.H., Schilling, H.: Acceleration of Shortest Path and Constrained Shortest Path Computation. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 126–138. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.: Combining Hierarchical and Goal-Directed Speed-Up Techniques for Dijkstra’s Algorithm. ACM Journ. of Exp. Algorithmics 15, 1–31 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway Dimension, Shortest Paths, and Provably Efficient Algorithms. In: Proc. of the 21st Annual ACM–SIAM Symposium on Discrete Algorithms, SODA 2010 (2010)Google Scholar
  11. 11.
    Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: VC-Dimension and Shortest Path Algorithms. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 690–699. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A Hub-Based Labeling Algorithm for Shortest Paths in Road Networks. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 230–241. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Alternative Routes in Road Networks (2011),
  14. 14.
    Cambridge Vehicle Information Tech. Ltd: Choice Routing,
  15. 15.
    Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Graph Partitioning with Natural Cuts. In: 25th International Parallel and Distributed Processing Symposium (IPDPS 2011). IEEE Computer Society (2011)Google Scholar
  16. 16.
    Sanders, P., Schulz, C.: Engineering Multilevel Graph Partitioning Algorithms. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 469–480. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Demetrescu, C., Goldberg, A.V., Johnson, D.S. (eds.): The 9th DIMACS Implementation Challenge – Shortest Paths. American Mathematical Society (2006)Google Scholar
  18. 18.
    Bader, R., Dees, J., Geisberger, R., Sanders, P.: Alternative Route Graphs in Road Networks. In: Marchetti-Spaccamela, A., Segal, M. (eds.) TAPAS 2011. LNCS, vol. 6595, pp. 21–32. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Delling, D., Goldberg, A.V., Nowatzyk, A., Werneck, R.F.: PHAST: Hardware-Accelerated Shortest Path Trees. In: 25th International Parallel and Distributed Processing Symposium (IPDPS 2011). IEEE (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dennis Luxen
    • 1
  • Dennis Schieferdecker
    • 1
  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations