Adaptive Distributed b-Matching in Overlays with Preferences

  • Giorgos Georgiadis
  • Marina Papatriantafilou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7276)


An important function of overlay networks is the facilitation of connection, interaction and resource sharing between peers. The peers may maintain some private notion of how a “desirable” peer should look like and they share their bounded resources with peers that they prefer better than others. Recent research proposed that this problem can be modeled and studied analytically as a many-to-many matching problem with preferences. The solutions suggested by the latter proposal guarantee both algorithmic convergence and stabilization, however they address static networks with specific properties, where no node joining or leaving is considered. In this paper we present an adaptive, distributed algorithm for the many-to-many matching problem with preferences that works over any network, provides a guaranteed approximation for the total satisfaction in the network and guarantees convergence. In addition, we provide a detailed experimental study of the algorithm that focuses on the levels of achieved satisfaction as well as convergence and reconvergence speed. Finally, we improve, both for static and dynamic networks, the previous known approximation ratio.


Network Size Match Problem Overlay Network Preference Change Preference List 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Irving, R.W., Scott, S.: The stable fixtures problem - a many-to-many extension of stable roommates. Discrete Appl. Math. 155(16), 2118–2129 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Mathieu, F.: Self-stabilization in preference-based systems. Peer-to-Peer Networking and Applications 1(2), 104–121 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: A distributed polylogarithmic time algorithm for self-stabilizing skip graphs. In: Proceedings of the 28th ACM Symposium on Principles of Distributed Computing, PODC 2009, pp. 131–140. ACM (2009)Google Scholar
  4. 4.
    Awerbuch, B., Scheideler, C.: Towards a scalable and robust dht. Theory of Computing Systems 45, 234–260 (2009), doi:10.1007/s00224-008-9099-9MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Edmonds, J.: Paths, trees and flowers. Canadian Journal of Mathematics 17, 449–467 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Gale, D., Shapley, L.S.: College admissions and the stability of marriage. American Mathematical Monthly 69, 9–15 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Gusfield, D., Irving, R.W.: The stable marriage problem: structure and algorithms. MIT Press, Cambridge (1989)zbMATHGoogle Scholar
  8. 8.
    Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In: SODA 2006: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 980–989. ACM (2006)Google Scholar
  9. 9.
    Hoepman, J.H.: Simple distributed weighted matchings. CoRR cs.DC/0410047 (2004)Google Scholar
  10. 10.
    Lotker, Z., Patt-Shamir, B., Rosen, A.: Distributed approximate matching. In: PODC 2007: Proceedings of the Twenty-sixth Annual ACM Symposium on Principles of Distributed Computing, pp. 167–174. ACM (2007)Google Scholar
  11. 11.
    Wattenhofer, M., Wattenhofer, R.: Distributed Weighted Matching. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 335–348. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Manne, F., Mjelde, M.: A Self-stabilizing Weighted Matching Algorithm. In: Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838, pp. 383–393. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Lotker, Z., Patt-Shamir, B., Pettie, S.: Improved distributed approximate matching. In: SPAA 2008: Proceedings of the Twentieth Annual Symposium on Parallelism in Algorithms and Architectures, pp. 129–136. ACM (2008)Google Scholar
  14. 14.
    Koufogiannakis, C., Young, N.E.: Distributed Fractional Packing and Maximum Weighted b-Matching via Tail-Recursive Duality. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 221–238. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Cechlárová, K., Fleiner, T.: On a generalization of the stable roommates problem. ACM Trans. Algorithms 1(1), 143–156 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gai, A.-T., Lebedev, D., Mathieu, F., de Montgolfier, F., Reynier, J., Viennot, L.: Acyclic Preference Systems in P2P Networks. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 825–834. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Lee, H.: Online stable matching as a means of allocating distributed resources. Journal of Systems Architecture 45(15), 1345–1355 (1999)CrossRefGoogle Scholar
  18. 18.
    Georgiadis, G., Papatriantafilou, M.: Overlays with preferences: Approximation algorithms for matching with preference lists. In: Proceedings of 24th IEEE International Parallel and Distributed Processing Symposium (IPDPS 2010). IEEE Computer Society Press (April 2010)Google Scholar
  19. 19.
    Preis, R.: Linear Time \(\frac{1}{2}\)-Approximation Algorithm for Maximum Weighted Matching in General Graphs. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 259–269. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Georgiadis, G., Papatriantafilou, M.: Adaptive distributed b-matching in overlays with preferences. Technical report, Chalmers University of Technology (March 2012)Google Scholar
  21. 21.
    Chandy, K.M., Misra, J.: The drinking philosophers problem. ACM Transactions on Programming Languages and Systems 6(4), 632–646 (1984)CrossRefGoogle Scholar
  22. 22.
    Jelasity, M., Montresor, A., Jesi, G.P., Voulgaris, S.: The Peersim simulator,
  23. 23.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Bollobás, B.: Random Graphs. Academic Press, New York (1985)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Giorgos Georgiadis
    • 1
  • Marina Papatriantafilou
    • 1
  1. 1.Department of Computer Science and EngineeringChalmers University of TechnologyGöteborgSweden

Personalised recommendations