A More Reliable Greedy Heuristic for Maximum Matchings in Sparse Random Graphs

  • Martin Dietzfelbinger
  • Hendrik Peilke
  • Michael Rink
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7276)


We propose a new greedy algorithm for the maximum cardinality matching problem. We give experimental evidence that this algorithm is likely to find a maximum matching in random graphs with constant expected degree c > 0, independent of the value of c. This is contrary to the behavior of commonly used greedy matching heuristics which are known to have some range of c where they probably fail to compute a maximum matching.


Bipartite Graph Greedy Algorithm Random Graph Reduction Step General Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boost C++ Libraries (version 1.44.0),
  2. 2.
    Aronson, J., Frieze, A.M., Pittel, B.: Maximum matchings in sparse random graphs: Karp-Sipser revisited. Random Struct. Algorithms 12(2), 111–177 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bast, H., Mehlhorn, K., Schäfer, G., Tamaki, H.: Matching Algorithms Are Fast in Sparse Random Graphs. Theory Comput. Syst. 39(1), 3–14 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bohman, T., Frieze, A.M.: Karp-Sipser on Random Graphs with a Fixed Degree Sequence. Combinatorics, Probability & Computing 20(5), 721–741 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bordenave, C., Lelarge, M., Salez, J.: Matchings on infinite graphs. CoRR arXiv:1102.0712 (2011)Google Scholar
  6. 6.
    Cain, J.A., Sanders, P., Wormald, N.C.: The Random Graph Threshold for k-orientiability and a Fast Algorithm for Optimal Multiple-Choice Allocation. In: Proc. 18th SODA, pp. 469–476. ACM-SIAM (2007)Google Scholar
  7. 7.
    Chebolu, P., Frieze, A.M., Melsted, P.: Finding a Maximum Matching in a Sparse Random Graph in O(n) Expected Time. J. ACM 57(4) (2010)Google Scholar
  8. 8.
    Coppersmith, D., Winograd, S.: Matrix Multiplication via Arithmetic Progressions. J. Symb. Comput. 9(3), 251–280 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Dietzfelbinger, M., Goerdt, A., Mitzenmacher, M., Montanari, A., Pagh, R., Rink, M.: Tight Thresholds for Cuckoo Hashing via XORSAT. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part I. LNCS, vol. 6198, pp. 213–225. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Dietzfelbinger, M., Peilke, H., Rink, M.: A More Reliable Greedy Heuristic for Maximum Matchings in Sparse Random Graphs. CoRR arXiv:1203.4117 (2012)Google Scholar
  11. 11.
    Edmonds, J.: Paths, trees, and flowers. Canadian Journal of Mathematics 17, 449–467 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M., Rossi, F.: GNU Scientific Library Reference Manual - Edition 1.15, for GSL Version 1.15 (2011),
  13. 13.
    Hopcroft, J.E., Karp, R.M.: An n 5/2 Algorithm for Maximum Matchings in Bipartite Graphs. SIAM J. Comput. 2(4), 225–231 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Karp, R.M., Sipser, M.: Maximum Matchings in Sparse Random Graphs. In: Proc. 22nd FOCS, pp. 364–375. IEEE Computer Society (1981)Google Scholar
  15. 15.
    Magun, J.: Greedy Matching Algorithms: An Experimental Study. ACM Journal of Experimental Algorithmics 3, 6 (1998)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Micali, S., Vazirani, V.V.: An \(O(\sqrt{|v|} \cdot |E|)\) Algorithm for Finding Maximum Matching in General Graphs. In: Proc. 21st FOCS, pp. 17–27. IEEE Computer Society (1980)Google Scholar
  17. 17.
    Mucha, M., Sankowski, P.: Maximum Matchings via Gaussian Elimination. In: Proc. 45th FOCS, pp. 248–255. IEEE Computer Society (2004)Google Scholar
  18. 18.
    Sanders, P.: Algorithms for Scalable Storage Servers. In: Van Emde Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 82–101. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Tarjan, R.E.: Data Structures and Network Algorithms. SIAM, Philadelphia (1983)CrossRefGoogle Scholar
  20. 20.
    Thomas, D.B., Luk, W., Leong, P.H., Villasenor, J.D.: Gaussian Random Number Generators. ACM Comput. Surv. 39 (2007)Google Scholar
  21. 21.
    Vazirani, V.V.: A Theory of Alternating Paths and Blossoms for Proving Correctness of the \(O(\sqrt{V} E)\) General Graph Maximum Matching Algorithm. Combinatorica 14(1), 71–109 (1994)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Martin Dietzfelbinger
    • 1
  • Hendrik Peilke
    • 2
  • Michael Rink
    • 1
  1. 1.Fakultät für Informatik und AutomatisierungTechnische Universität IlmenauGermany
  2. 2.IBYKUS AG für InformationstechnologieErfurtGermany

Personalised recommendations