Engineering a New Loop-Free Shortest Paths Routing Algorithm

  • Gianlorenzo D’Angelo
  • Mattia D’Emidio
  • Daniele Frigioni
  • Vinicio Maurizio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7276)


We present LFR (Loop Free Routing), a new loop-free distance vector routing algorithm, which is able to update the shortest paths of a distributed network with n nodes in fully dynamic scenarios. If Φ is the total number of nodes affected by a set of updates to the network, and φ is the maximum number of destinations for which a node is affected, then LFR requires O(Φ ·Δ) messages and O(n + φ ·Δ) space per node, where Δ is the maximum degree of the nodes of the network.

We experimentally compare LFR with DUAL, one of the most popular loop-free distance vector algorithms, which is part of CISCO’s EIGRP protocol and requires O(Φ ·Δ) messages and Θ(n ·Δ) space per node. The experiments are based on both real-world and artificial instances and show that LFR is always the best choice in terms of memory requirements, while in terms of messages LFR outperforms DUAL on real-world instances, whereas DUAL is the best choice on artificial instances.


Short Path Random Graph Node Degree Dynamic Graph Open Short Path First 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Awerbuch, B., Bar-Noy, A., Gopal, M.: Approximate distributed bellman-ford algorithms. IEEE Trans. on Communications 42(8), 2515–2517 (1994)CrossRefGoogle Scholar
  2. 2.
    Bollobás, B.: Random Graphs. Cambridge University Press (2001)Google Scholar
  3. 3.
    Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D.: Partially dynamic efficient algorithms for distributed shortest paths. Theoretical Computer Science 411, 1013–1037 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Maurizio, V.: Engineering a new algorithm for distributed shortest paths on dynamic networks. Algorithmica To appear Prel. version in [5]Google Scholar
  5. 5.
    Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Maurizio, V.: A New Fully Dynamic Algorithm for Distributed Shortest Paths and Its Experimental Evaluation. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 59–70. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Cicerone, S., Di Stefano, G., Frigioni, D., Nanni, U.: A fully dynamic algorithm for distributed shortest paths. Theoretical Comp. Science 297(1-3), 83–102 (2003)zbMATHCrossRefGoogle Scholar
  7. 7.
    D’Angelo, G., D’Emidio, M., Frigioni, D., Maurizio, V.: A Speed-Up Technique for Distributed Shortest Paths Computation. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part II. LNCS, vol. 6783, pp. 578–593. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Elmeleegy, K., Cox, A.L., Ng, T.S.E.: On count-to-infinity induced forwarding loops in ethernet networks. In: Proceedings IEEE INFOCOM, pp. 1–13 (2006)Google Scholar
  9. 9.
    Garcia-Lunes-Aceves, J.J.: Loop-free routing using diffusing computations. IEEE/ACM Trans. on Networking 1(1), 130–141 (1993)CrossRefGoogle Scholar
  10. 10.
    Humblet, P.A.: Another adaptive distributed shortest path algorithm. IEEE Trans. on Communications 39(6), 995–1002 (1991)zbMATHCrossRefGoogle Scholar
  11. 11.
    Hyun, Y., Huffaker, B., Andersen, D., Aben, E., Shannon, C., Luckie, M., Claffy, K.: The CAIDA IPv4 routed/24 topology dataset,
  12. 12.
    McQuillan, J.: Adaptive routing algorithms for distributed computer networks. Technical Report BBN Report 2831, Cambridge, MA (1974)Google Scholar
  13. 13.
    Moy, J.T.: OSPF: Anatomy of an Internet routing protocol. Addison-Wesley (1998)Google Scholar
  14. 14.
    OMNeT++. Discrete event simulation environment,
  15. 15.
    Orda, A., Rom, R.: Distributed shortest-path and minimum-delay protocols in networks with time-dependent edge-length. Distr. Computing 10, 49–62 (1996)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ramarao, K.V.S., Venkatesan, S.: On finding and updating shortest paths distributively. Journal of Algorithms 13, 235–257 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Ray, S., Guérin, R., Kwong, K.-W., Sofia, R.: Always acyclic distributed path computation. IEEE/ACM Trans. on Networking 18(1), 307–319 (2010)CrossRefGoogle Scholar
  18. 18.
    Rosen, E.C.: The updating protocol of arpanet’s new routing algorithm. Computer Networks 4, 11–19 (1980)Google Scholar
  19. 19.
    Yao, N., Gao, E., Qin, Y., Zhang, H.: Rd: Reducing message overhead in DUAL. In: Proceedings 1st International Conference on Network Infrastructure and Digital Content (IC-NIDC 2009), pp. 270–274. IEEE Press (2009)Google Scholar
  20. 20.
    Zhao, C., Liu, Y., Liu, K.: A more efficient diffusing update algorithm for loop-free routing. In: 5th International Conference on Wireless Communications, Networking and Mobile Computing (WiCom 2009), pp. 1–4. IEEE Press (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gianlorenzo D’Angelo
    • 1
  • Mattia D’Emidio
    • 2
  • Daniele Frigioni
    • 2
  • Vinicio Maurizio
    • 2
  2. 2.Department of Electrical and Information EngineeringUniversity of L’AquilaItaly

Personalised recommendations