Engineering a New Loop-Free Shortest Paths Routing Algorithm

  • Gianlorenzo D’Angelo
  • Mattia D’Emidio
  • Daniele Frigioni
  • Vinicio Maurizio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7276)


We present LFR (Loop Free Routing), a new loop-free distance vector routing algorithm, which is able to update the shortest paths of a distributed network with n nodes in fully dynamic scenarios. If Φ is the total number of nodes affected by a set of updates to the network, and φ is the maximum number of destinations for which a node is affected, then LFR requires O(Φ ·Δ) messages and O(n + φ ·Δ) space per node, where Δ is the maximum degree of the nodes of the network.

We experimentally compare LFR with DUAL, one of the most popular loop-free distance vector algorithms, which is part of CISCO’s EIGRP protocol and requires O(Φ ·Δ) messages and Θ(n ·Δ) space per node. The experiments are based on both real-world and artificial instances and show that LFR is always the best choice in terms of memory requirements, while in terms of messages LFR outperforms DUAL on real-world instances, whereas DUAL is the best choice on artificial instances.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Awerbuch, B., Bar-Noy, A., Gopal, M.: Approximate distributed bellman-ford algorithms. IEEE Trans. on Communications 42(8), 2515–2517 (1994)CrossRefGoogle Scholar
  2. 2.
    Bollobás, B.: Random Graphs. Cambridge University Press (2001)Google Scholar
  3. 3.
    Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D.: Partially dynamic efficient algorithms for distributed shortest paths. Theoretical Computer Science 411, 1013–1037 (2010)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Maurizio, V.: Engineering a new algorithm for distributed shortest paths on dynamic networks. Algorithmica To appear Prel. version in [5]Google Scholar
  5. 5.
    Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Maurizio, V.: A New Fully Dynamic Algorithm for Distributed Shortest Paths and Its Experimental Evaluation. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 59–70. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Cicerone, S., Di Stefano, G., Frigioni, D., Nanni, U.: A fully dynamic algorithm for distributed shortest paths. Theoretical Comp. Science 297(1-3), 83–102 (2003)MATHCrossRefGoogle Scholar
  7. 7.
    D’Angelo, G., D’Emidio, M., Frigioni, D., Maurizio, V.: A Speed-Up Technique for Distributed Shortest Paths Computation. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part II. LNCS, vol. 6783, pp. 578–593. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Elmeleegy, K., Cox, A.L., Ng, T.S.E.: On count-to-infinity induced forwarding loops in ethernet networks. In: Proceedings IEEE INFOCOM, pp. 1–13 (2006)Google Scholar
  9. 9.
    Garcia-Lunes-Aceves, J.J.: Loop-free routing using diffusing computations. IEEE/ACM Trans. on Networking 1(1), 130–141 (1993)CrossRefGoogle Scholar
  10. 10.
    Humblet, P.A.: Another adaptive distributed shortest path algorithm. IEEE Trans. on Communications 39(6), 995–1002 (1991)MATHCrossRefGoogle Scholar
  11. 11.
    Hyun, Y., Huffaker, B., Andersen, D., Aben, E., Shannon, C., Luckie, M., Claffy, K.: The CAIDA IPv4 routed/24 topology dataset,
  12. 12.
    McQuillan, J.: Adaptive routing algorithms for distributed computer networks. Technical Report BBN Report 2831, Cambridge, MA (1974)Google Scholar
  13. 13.
    Moy, J.T.: OSPF: Anatomy of an Internet routing protocol. Addison-Wesley (1998)Google Scholar
  14. 14.
    OMNeT++. Discrete event simulation environment,
  15. 15.
    Orda, A., Rom, R.: Distributed shortest-path and minimum-delay protocols in networks with time-dependent edge-length. Distr. Computing 10, 49–62 (1996)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ramarao, K.V.S., Venkatesan, S.: On finding and updating shortest paths distributively. Journal of Algorithms 13, 235–257 (1992)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Ray, S., Guérin, R., Kwong, K.-W., Sofia, R.: Always acyclic distributed path computation. IEEE/ACM Trans. on Networking 18(1), 307–319 (2010)CrossRefGoogle Scholar
  18. 18.
    Rosen, E.C.: The updating protocol of arpanet’s new routing algorithm. Computer Networks 4, 11–19 (1980)Google Scholar
  19. 19.
    Yao, N., Gao, E., Qin, Y., Zhang, H.: Rd: Reducing message overhead in DUAL. In: Proceedings 1st International Conference on Network Infrastructure and Digital Content (IC-NIDC 2009), pp. 270–274. IEEE Press (2009)Google Scholar
  20. 20.
    Zhao, C., Liu, Y., Liu, K.: A more efficient diffusing update algorithm for loop-free routing. In: 5th International Conference on Wireless Communications, Networking and Mobile Computing (WiCom 2009), pp. 1–4. IEEE Press (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gianlorenzo D’Angelo
    • 1
  • Mattia D’Emidio
    • 2
  • Daniele Frigioni
    • 2
  • Vinicio Maurizio
    • 2
  2. 2.Department of Electrical and Information EngineeringUniversity of L’AquilaItaly

Personalised recommendations