Linda in Space-Time: An Adaptive Coordination Model for Mobile Ad-Hoc Environments

  • Mirko Viroli
  • Danilo Pianini
  • Jacob Beal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7274)


We present a vision of distributed system coordination as a set of activities affecting the space-time fabric of interaction events. In the tuple space setting that we consider, coordination amounts to control of the spatial and temporal configuration of tuples spread across the network, which in turn drives the behaviour of situated agents. We therefore draw on prior work in spatial computing and distributed systems coordination, to define a new coordination language that adds to the basic Linda primitives a small set of space-time constructs for linking coordination processes with their environment. We show how this framework supports the global-level emergence of adaptive coordination policies, applying it to two example cases: crowd steering in a pervasive computing scenario and a gradient-based implementation of Linda primitives for mobile ad-hoc networks.


Operational Semantic Coordination Model Incoming Message Tuple Space Computation Round 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bachrach, J., Beal, J., Fujiwara, T.: Continuous space-time semantics allow adaptive program execution. In: IEEE SASO 2007, New York, pp. 315–319. IEEE (July 2007)Google Scholar
  2. 2.
    Beal, J.: Flexible self-healing gradients. In: Proceedings of the 2009 ACM Symposium on Applied Computing, SAC, pp. 1197–1201. ACM (2009)Google Scholar
  3. 3.
    Beal, J.: A basis set of operators for space-time computations. In: Self-Adaptive and Self-Organizing Systems Workshop (SASOW 2010), pp. 91–97 (September 2010)Google Scholar
  4. 4.
    Beal, J., Bachrach, J.: Infrastructure for engineered emergence on sensor/actuator networks. IEEE Intelligent Systems 21(2), 10–19 (2006)CrossRefGoogle Scholar
  5. 5.
    Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate: Languages for spatial computing. CoRR, abs/1202.5509 (2012)Google Scholar
  6. 6.
    Beal, J., Michel, O., Schultz, U.P.: Spatial computing: Distributed systems that take advantage of our geometric world. ACM Transactions on Autonomous and Adaptive Systems 6, 11:1–11:3 (2011)CrossRefGoogle Scholar
  7. 7.
    Bettini, L., Nicola, R.D., Pugliese, R.: Klava: a java package for distributed and mobile applications. Softw., Pract. Exper. 32(14), 1365–1394 (2002)zbMATHCrossRefGoogle Scholar
  8. 8.
    Busi, N., Gorrieri, R., Zavattaro, G.: On the expressiveness of Linda coordination primitives. Inf. Comput. 156(1-2), 90–121 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Cabri, G., Leonardi, L., Zambonelli, F.: MARS: A programmable coordination architecture for mobile agents. IEEE Internet Computing 4(4), 26–35 (2000)CrossRefGoogle Scholar
  10. 10.
    Cardelli, L.: Brane Calculi. Interactions of Biological Membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Cardelli, L., Gardner, P.: Processes in Space. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 78–87. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Cardelli, L., Gordon, A.D.: Mobile ambients. Theoretical Computer Science 240(1), 177–213 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Couderc, P., Banatre, M.: Ambient computing applications: an experience with the spread approach. Hawaii International Conference on System Sciences, HICSS 2003 (January 2003)Google Scholar
  14. 14.
    Fernandez-Marquez, J.L., Di Marzo Serugendo, G., Montagna, S., Viroli, M., Arcos, J.L.: Self-organising design patterns. Natural Computing (to appear, 2012)Google Scholar
  15. 15.
    Gardelli, L., Viroli, M., Omicini, A.: Design Patterns for Self-organising Systems. In: Burkhard, H.-D., Lindemann, G., Verbrugge, R., Varga, L.Z. (eds.) CEEMAS 2007. LNCS (LNAI), vol. 4696, pp. 123–132. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang. Syst. 7(1), 80–112 (1985)zbMATHCrossRefGoogle Scholar
  17. 17.
    Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applications: The tota approach. ACM Trans. Softw. Eng. Methodol. 18(4), 1–56 (2009)CrossRefGoogle Scholar
  18. 18.
    Nicola, R.D., Ferrari, G.L., Pugliese, R.: Klaim: A kernel language for agents interaction and mobility. IEEE Trans. Software Eng. 24(5), 315–330 (1998)CrossRefGoogle Scholar
  19. 19.
    Omicini, A., Ricci, A., Viroli, M.: An algebraic approach for modelling organisation, roles and contexts in MAS. Applicable Algebra in Engineering, Communication and Computing 16(2-3), 151–178 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Omicini, A., Ricci, A., Viroli, M.: Coordination Artifacts as First-Class Abstractions for MAS Engineering: State of the Research. In: Garcia, A., Choren, R., Lucena, C., Giorgini, P., Holvoet, T., Romanovsky, A. (eds.) SELMAS 2005. LNCS(LNAI), vol. 3914, pp. 71–90. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Omicini, A., Viroli, M.: Coordination models and languages: From parallel computing to self-organisation. The Knowledge Engineering Review 26(1), 53–59 (2011); Special Issue 01 (25th Anniversary Issue).CrossRefGoogle Scholar
  22. 22.
    Omicini, A., Zambonelli, F.: Coordination for Internet application development. Autonomous Agents and Multi-Agent Systems 2(3), 251–269 (1999)CrossRefGoogle Scholar
  23. 23.
    Paun, G.: Membrane Computing: An Introduction. Springer-Verlag New York, Inc., New York (2002)zbMATHCrossRefGoogle Scholar
  24. 24.
    Pauty, J., Couderc, P., Banatre, M., Berbers, Y.: Geo-linda: a geometry aware distributed tuple space. In: IEEE 21st International Conference on Advanced Networking and Applications (AINA 2007), pp. 370–377 (May 2007)Google Scholar
  25. 25.
    Pianini, D., Montagna, S., Viroli, M.: A chemical inspired simulation framework for pervasive services ecosystems. In: Proceedings of the Federated Conference on Computer Science and Information Systems, pp. 667–674. IEEE Computer Society Press (2011)Google Scholar
  26. 26.
    Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A process calculus for mobile ad hoc networks. Sci. Comput. Program. 75(6), 440–469 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Viroli, M., Beal, J., Casadei, M.: Core operational semantics of Proto. In: 26th Annual ACM Symposium on Applied Computing, SAC 2011, Tunghai University, TaiChung, Taiwan, March 21-25. ACM (2011)Google Scholar
  28. 28.
    Viroli, M., Casadei, M.: Biochemical Tuple Spaces for Self-organising Coordination. In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 143–162. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  29. 29.
    Viroli, M., Casadei, M., Montagna, S., Zambonelli, F.: Spatial coordination of pervasive services through chemical-inspired tuple spaces. ACM Transactions on Autonomous and Adaptive Systems 6(2), 14:1–14:24 (2011)CrossRefGoogle Scholar
  30. 30.
    Viroli, M., Pianini, D., Montagna, S., Stevenson, G.: Pervasive ecosystems: a coordination model based on semantic chemistry. In: Ossowski, S., Lecca, P., Hung, C.-C., Hong, J. (eds.) 27th Annual ACM Symposium on Applied Computing, SAC 2012, Riva del Garda, TN, Italy, March 26-30. ACM (2012)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Mirko Viroli
    • 1
  • Danilo Pianini
    • 1
  • Jacob Beal
    • 2
  1. 1.Alma Mater Studiorum – Università di BolognaItaly
  2. 2.Raytheon BBN TechnologiesUSA

Personalised recommendations