7 Carbohydrates Exchange Between Symbionts in Ectomycorrhizas

Chapter
Part of the The Mycota book series (MYCOTA, volume 9)

Abstract

Sequencing projects, whole genome expression analysis, and extensive field studies have dramatically broadened our view on ectomycorrhizal development and function. The aim of this review is to summarize and comment on current concepts of ectomycorrhizal fungal carbon nutrition, its prerequisites and consequences for the fungus as well as for its plant partner. We discuss fungal carbon uptake and conversion into metabolites by soil-growing hyphae and those of the plant–fungus interface of functional ectomycorrhizas. Furthermore, we talk about long-distance transport metabolites, necessary for carbohydrate distribution within the fungal colony. After reviewing the basics of fungal C-nutrition, established and novel concepts of plant-derived fungal carbon support are discussed. Based on potential fungal carbohydrate sources in symbiosis, putative plant carbon export mechanisms are described. Furthermore, plant strategies of controlling the fungal sugar support are summarized. As a result, the reader will be provided with a comprehensive summary of the current research status.

Keywords

Arbuscular Mycorrhizal Fine Root Invertase Activity Acid Invertase Fungal Partner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abuzinadah RA, Read DJ (1986) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. III. Protein utilisation by Betula, Picea and Pinus in mycorrhizal association with Hebeloma crustuliniforme. New Phytol 103:507–514CrossRefGoogle Scholar
  2. Agerer R (2001) Exploration types of ectomycorrhizae. Mycorrhiza 11:107–114CrossRefGoogle Scholar
  3. Anderson IC, Cairney JWG (2007) Ectomycorrhizal fungi: exploring the mycelial frontier. FEMS Microbiol Rev 31:388–406PubMedCrossRefGoogle Scholar
  4. Anderson IC, Chambers SM, Cairney JWG (1998) Use of molecular methods to estimate the size and distribution of mycelial individuals of the ectomycorrhizal basidiomycete Pisolithus tinctorius. Mycol Res 102:295–300CrossRefGoogle Scholar
  5. Bajwa R, Abuarghub S, Read DJ (1985) The biology of mycorrhiza in the ericaceae. X. The utilization of proteins and the production of proteolytic enzymes by the mycorrhizal endophyte and by mycorrhizal plants. New Phytol 101:469–486CrossRefGoogle Scholar
  6. Bending GD, Read DJ (1996) Nitrogen mobilization from protein–polyphenol complex by ericoid and ectomycorrhizal fungi. Soil Biol Biochem 28:1603–1612CrossRefGoogle Scholar
  7. Bevege DI, Bowen GD, Skinner MF (1975) Comparative carbohydrate physiology of ecto-and endo-mycorrhizas. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic, London, pp 149–174Google Scholar
  8. Biemelt S, Sonnewald U (2006) Plant-microbe interactions to probe regulation of plant carbon metabolism. J Plant Physiol 163:307–318PubMedCrossRefGoogle Scholar
  9. Blasius D, Feil W, Kottke I, Oberwinkler F (1986) Hartig net structure and formation of fully ensheated ectomycorrhizas. Nord J Bot 6:837–842CrossRefGoogle Scholar
  10. Blee KA, Anderson AJ (2002) Transcripts for genes encoding soluble acid invertase and sucrose synthase accumulate in root tip and cortical cells containing mycorrhizal arbuscules. Plant Mol Biol 50:197–211PubMedCrossRefGoogle Scholar
  11. Bonfig K, Schreiber U, Gabler A, Roitsch T, Berger S (2006) Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta 225:1–12PubMedCrossRefGoogle Scholar
  12. Bücking H, Heyser W (2003) Uptake and transfer of nutrients in ectomycorrhizal associations: interactions between photosynthesis and phosphate nutrition. Mycorrhiza 13:59–68PubMedCrossRefGoogle Scholar
  13. Buee M, Vairelles D, Garbaye J (2005) Year-round monitoring of diversity and potential metabolic activity of the ectomycorrhizal community in a beech (Fagus silvatica) forest subjected to two thinning regimes. Mycorrhiza 15:235–245PubMedCrossRefGoogle Scholar
  14. Buee M, Courty PE, Mignot D, Garbaye J (2007) Soil niche effect on species diversity and catabolic activities in an ectomycorrhizal fungal community. Soil Biol Biochem 39:1947–1955CrossRefGoogle Scholar
  15. Cairney JWG, Ashford AE, Allaway WG (1989) Distribution of photosynthetically fixed carbon within root systems of Eucalyptus pilularis plants ectomycorrhizal with Pisolithus tinctorius. New Phytol 112:495–500CrossRefGoogle Scholar
  16. Cakmak I, Marschner H (1988) Increase in membrane permeability and exudation in roots of zinc deficient plants. Plant Physiol Biochem 132:356–361Google Scholar
  17. Carpaneto A, Geiger D, Bamberg E, Sauer N, Fromm J, Hedrich R (2005) Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force. J Biol Chem 280:21437–21443PubMedCrossRefGoogle Scholar
  18. Chen XY, Hampp R (1993) Sugar uptake by protoplasts of the ectomycorrhizal fungus, Amanita muscaria (L. ex Fr.) hooker. New Phytol 125:601–608CrossRefGoogle Scholar
  19. Chen L-Q, Hou B-H, Lalonde S, Takanaga H, Hartung ML, Qu X-Q, Guo W-J, Kim J-G, Underwood W, Chaudhuri B, Chermak D, Antony G, White FF, Somerville SC, Mudgett MB, Frommer WB (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–532PubMedCrossRefGoogle Scholar
  20. Chou H, Bundock N, Rolfe S, Scholes J (2000) Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolism. Mol Plant Pathol 1:99–113PubMedCrossRefGoogle Scholar
  21. Courty P-E, Pritsch K, Schloter M, Hartmann A, Garbaye J (2005) Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. New Phytol 167:309–319PubMedCrossRefGoogle Scholar
  22. Courty P-E, Breda N, Garbaye J (2007) Relation between oak tree phenology and the secretion of organic matter degrading enzymes by Lactarius quietus ectomycorrhizas before and during bud break. Soil Biol Biochem 39:1655–1663CrossRefGoogle Scholar
  23. Deveau A, Kohler A, Frey-Klett P, Martin F (2008) The major pathways of carbohydrate metabolism in the ectomycorrhizal basidiomycete Laccaria bicolor S238N. New Phytol 180:379–390PubMedCrossRefGoogle Scholar
  24. Doehlemann G, Molitor F, Hahn M (2005) Molecular and functional characterization of a fructose specific transporter from the gray mold fungus Botrytis cinerea. Fungal Genet Biol 42:601–610PubMedCrossRefGoogle Scholar
  25. Druebert C, Lang L, Valtanen K, Polle A (2009) Beech carbon productivity as driver of ectomycorrhizal abundance and diversity. Plant Cell Environ 32:992–1003PubMedCrossRefGoogle Scholar
  26. Duplessis S, Courty PE, Tagu D, Martin F (2005) Transcript patterns associated with ectomycorrhiza development in Eucalyptus globulus and Pisolithus microcarpus. New Phytol 165:599–611PubMedCrossRefGoogle Scholar
  27. Eis C, Nidetzky B (1999) Characterization of trehalose phosphorylase from Schizophyllum commune. Biochem J 341:385–393PubMedCrossRefGoogle Scholar
  28. Eis C, Albert M, Dax K, Nidetzky B (1998) The stereochemical course of the reaction mechanism of trehalose phosphorylase from Schizophyllum commune. FEBS Lett 440:440–443PubMedCrossRefGoogle Scholar
  29. El-Badaoui K, Botton B (1989) Production and characterization of exocellular proteases in ectomycorrhizal fungi. Anal Sci For 46:728–730CrossRefGoogle Scholar
  30. Entry JA, Donnelly PK, Cromack KJ (1991) Influence of ectomycorrhizal mat soils on lignin and cellulose degradation. Biol Fert Soils 11:75–78CrossRefGoogle Scholar
  31. Essmann J, Schmitz-Thom I, Schön H, Sonnewald S, Weis E, Scharte J (2008) RNA interference-mediated repression of cell wall invertase impairs defense in source leaves of tobacco. Plant Physiol 147:1288–1299PubMedCrossRefGoogle Scholar
  32. Fajardo Lopez M, Dietz S, Grunze N, Bloschies J, Weiss M, Nehls U (2008) The sugar porter gene family of Laccaria bicolor: function in ectomycorrhizal symbiosis and soil-growing hyphae. New Phytol 180:365–378CrossRefGoogle Scholar
  33. Farrar J, Hawes M, Jones D, Lindow S (2003) How roots control the flux of carbon to the rhizosphere. Ecology 84:827–837CrossRefGoogle Scholar
  34. Fletcher M (1996) Bacterial adhesion. In: Fletcher M (ed) Bacterial adhesion: molecular and ecological diversity. Wiley-Liss, New York, pp 59–745Google Scholar
  35. Fotopoulos V, Gilbert MJ, Pittman JK, Marvier AV, Buchanan AJ, Sauer N, Hall JL, Williams LE (2003) The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atfruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiol 132:821–829PubMedCrossRefGoogle Scholar
  36. Francois J, Parrou JL (2001) Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 25:125–145PubMedCrossRefGoogle Scholar
  37. Frank B (1885) Über die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Ber Dtsch Bot Ges 3:128–145Google Scholar
  38. García-Rodríguez S, Azcón-Aguilar C, Ferrol N (2007) Transcriptional regulation of host enzymes involved in the cleavage of sucrose during arbuscular mycorrhizal symbiosis. Physiol Plant 129:737–746CrossRefGoogle Scholar
  39. Genet P, Prevost A, Pargney JC (2000) Seasonal variations of symbiotic ultrastructure and relationships of two natural ectomycorrhizae of beech (Fagus sylvatica/Lactarius blennius var. Viridis and Fagus sylvatica/Lactarius subdulcis). Trees 14:465–474CrossRefGoogle Scholar
  40. Goodyer ID, Hayes DJ, Eisenthal R (1997) Efflux of 6-deoxy-D-glucose from Plasmodium falciparum-infected erythrocytes via two saturable carriers. Mol Biochem Pathol 84:229–239CrossRefGoogle Scholar
  41. Göransson H, Wallander H, Ingerslev M, Rosengren U (2006) Estimating the relative nutrient uptake from different soil depths in Quercus robur, Fagus sylvatica and Picea abies. Plant Soil 286:87–97CrossRefGoogle Scholar
  42. Gottwald JR, Krysan PJ, Young JC, Evert RF, Sussman MR (2000) Genetic evidence for the in planta role of phloem-specific plasma membrane sucrose transporters. Proc Natl Acad Sci USA 97:13979–13984PubMedCrossRefGoogle Scholar
  43. Grayston SJ, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56CrossRefGoogle Scholar
  44. Grunze N, Willmann M, Nehls U (2004) The impact of ectomycorrhiza formation on monosaccharide transporter gene expression in poplar roots. New Phytol 164:147–155CrossRefGoogle Scholar
  45. Hamill S, Cloherty EK, Carruthers A (1999) The human erythrocyte sugar transporter presents two sugar import sites. Biochemistry 38:16974–16983PubMedCrossRefGoogle Scholar
  46. Hampp R, Schaeffer C, Wallenda T, Stülten C, Johann P, Einig W (1995) Changes in carbon partitioning or allocation due to ectomycorrhiza formation: biochemical evidence. Can J Bot 73:548–556CrossRefGoogle Scholar
  47. Harley JL, Jennings DH (1958) The effect of sugars on the respiratory response of beech mycorrhizas to salts. Proc R Soc Lond 148:403–418CrossRefGoogle Scholar
  48. Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, LondonGoogle Scholar
  49. Haselwandter K, Bobleter O, Read DJ (1990) Degradation of carbon-14 labelled lignin and dehydropolymer of coniferyl alcohol by ericoid and ectomycorrhizal fungi. Arch Microbiol 153:352–354CrossRefGoogle Scholar
  50. Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N (2011) A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp. is crucial for the symbiotic relationship with plants. Plant Cell 23: 3812–3823.Google Scholar
  51. Herbers K, Meuwly P, Frommer WB, Metraux JP, Sonnewald U (1996) Systemic acquired resistance mediated by the etopic expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell 8:793–803PubMedGoogle Scholar
  52. Herbers K, Takahata Y, Melzer M, Mock H, Hajirezaei M, Sonnewald U (2000) Regulation of carbohydrate partitioning during the interaction of potato virus Y with tobacco. Mol Plant Pathol 1:51–59PubMedCrossRefGoogle Scholar
  53. Herrmann S, Buscot F (2007) Cross talks at the morphogenetic, physiological and gene regulation levels between the mycobiont Piloderma croceum and oak microcuttings (Quercus robur) during formation of ectomycorrhizas. Phytochemistry 68:52–67PubMedCrossRefGoogle Scholar
  54. Hobbie EA (2006) Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology 87:563–569PubMedCrossRefGoogle Scholar
  55. Högberg MN, Högberg P (2002) Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytol 154:791–795CrossRefGoogle Scholar
  56. Högberg P, Nordgren A, Aren G (2002) Carbon allocation between tree root growth and root respiration in boreal pine forest. Oecologia 132:579–581CrossRefGoogle Scholar
  57. Horst R, Engelsdorf T, Sonnewald U, Voll L (2008) Infection of maize leaves with Ustilago maydis prevents establishment of C(4) photosynthesis. J Plant Physiol 165:19–28PubMedCrossRefGoogle Scholar
  58. Jones DL (1998) Organic acids in the rhizosphere: a critical review. Plant Soil 205:25–44CrossRefGoogle Scholar
  59. Jones DL, Darrah PR (1995) Influx and efflux of organic acids across the soil–root interface of Zea mays L. and its implications in rhizosphere C flow. Plant Soil 173:103–109CrossRefGoogle Scholar
  60. Jones DL, Darrah PR (1996) Re-sorption of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere. III Characteristics of sugar influx and efflux. Plant Soil 178:153–160CrossRefGoogle Scholar
  61. Jordy MN, Azemar LS, Brun A, Botton B, Pargney JC (1998) Cytolocalization of glycogen, starch, and other insoluble polysaccharides during ontogeny of Paxillus involutus/Betula pendula ectomycorrhizas. New Phytol 140:331–341CrossRefGoogle Scholar
  62. Kottke I, Oberwinkler F (1986) Mycorrhiza of forest trees – structure and function. Trees 1:1–24CrossRefGoogle Scholar
  63. Kowallik W, Thiemann M, Huang Y, Mutumba G, Beermann L, Broer D, Grotjohann N (1998) Complete sequence of glycolytic enzymes in the mycorrhizal basidiomycete, Suillus bovinus. Z Naturforsch 53:818–827Google Scholar
  64. Krügel U, Veenhoff LM, Langbein J, Wiederhold E, Liesche J, Friedrich T, Grimm B, Martinoia E, Poolman B, Kühn C (2008) Transport and sorting of the Solanum tuberosum sucrose transporter SUT1 is affected by posttranslational modification. Plant Cell 20:2497–2513PubMedCrossRefGoogle Scholar
  65. Kulmann C (2005) Lokalisation und regulation der sauren invertase in mykorrhizierten Kurzwurzeln. University of Bremen, BremenGoogle Scholar
  66. Le Quere A, Wright D, Soederstroem B, Tunlid A, Johansson T (2005) Global patterns of gene regulation associated with the development of ectomycorrhiza between birch (Betula pendula Roth.) and Paxillus involutus (Batsch) Fr. Mol Plant Micobe Interact 18:659–673CrossRefGoogle Scholar
  67. Leake J, Read D (1997) Mycorrhizal fungi in terrestrial habitat’s. In: Wicklow D, Söderström B (eds) The mycota IV: environmental and microbial relationships. Springer, Berlin, pp 281–301Google Scholar
  68. Leake JR, Donnelly DP, Saunders EM, Boddy L, Read DJ (2001) Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14C pulse labeling of Pinus sylvestris seedlings: effects of litter patches and interaction with a wood-decomposer fungus. Tree Physiol 21:71–82PubMedCrossRefGoogle Scholar
  69. Lewis DH, Harley JL (1965a) Carbohydrate physiology of mycorrhizal roots of beech I. Identity of endogenous sugars and utilization of exogenous sugars. New Phytol 64:224–237CrossRefGoogle Scholar
  70. Lewis DH, Harley JL (1965b) Carbohydrate physiology of mycorrhizal roots of beech II. Utilizaton of exogenous sugars by uninfected and mycorrhizal roots. New Phytol 64:238–255CrossRefGoogle Scholar
  71. Lewis DH, Harley JL (1965c) Carbohydrate physiology of mycorrhizal roots of beech. III. Movement of sugars between host and fungus. New Phytol 64:265–275Google Scholar
  72. Liesche J, He H-X, Grimm B, Schulz A, Kühn C (2010) Recycling of solanum sucrose transporters expressed in yeast, tobacco, and in mature phloem sieve elements. Mol Plant 3:1064–1074PubMedCrossRefGoogle Scholar
  73. Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620PubMedCrossRefGoogle Scholar
  74. Lindeberg G, Lindeberg M (1974) Effect of short chain fatty acids on the growth of some mycorrhizal and saprophytic hymenomycetes. Arch Microbiol 101:109–114PubMedCrossRefGoogle Scholar
  75. Lindeberg G, Lindeberg M (1977) Pectinolytic ability of some mycorrhizal and saprophytic hymenomycetes. Arch Microbiol 115:9–12PubMedCrossRefGoogle Scholar
  76. Litchfield J, Arthur M (1983) Growth of selected ectomycorrhizal fungi in aerated liquid culture. Dev Indust Microb 24:289–294Google Scholar
  77. Liu JY, Miller PF, Gosink M, Olson ER (1999a) The identification of a new family of sugar efflux pumps in Escherichia coli. Mol Microbiol 31:1845–1851PubMedCrossRefGoogle Scholar
  78. Liu JY, Miller PF, Willard J, Olson ER (1999b) Functional and biochemical characterization of Escherichia coli sugar efflux transporters. J Biol Chem 274:22977–22984PubMedCrossRefGoogle Scholar
  79. Lucic E, Fourrey C, Kohler A, Martin F, Chalot M, Brun-Jacob A (2008) A gene repertoire for nitrogen transporters in Laccaria bicolor. New Phytol 180:343–364PubMedCrossRefGoogle Scholar
  80. Lugtenberg BJJ, Kravchenko LV, Simons M (1999) Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ Microbiol 1:439–446PubMedCrossRefGoogle Scholar
  81. Martin F, Nehls U (2009) Harnessing ectomycorrhizal genomics for ecological insights. Curr Opin Plant Biol 12:508–515PubMedCrossRefGoogle Scholar
  82. Martin F, Boiffin VV, Pfeffer PE (1998) Carbohydrate and amino acid metabolism in the Eucalyptus globulusPisolithus tinctorius ectomycorrhiza during glucose utilization. Plant Physiol 118:627–635PubMedCrossRefGoogle Scholar
  83. Martin F, Duplessis S, Ditengou F, Lagrange H, Voiblet C, Lapeyrie F (2001) Developmental cross talking in the ectomycorrhizal symbiosis: signals and communication genes. New Phytol 151:145–154CrossRefGoogle Scholar
  84. Martin F, Aerts A, Ahrén D, Brun A, Duchaussoy F, Kohler A, Lindquist E, Salamov A, Shapiro HJ, Wuyts J, Blaudez D, Buée M, Brokstein P, Canbäck B, Cohen D, Courty PE, Coutinho PM, Danchin EGJ, Delaruelle C, Detter JC, Deveau A, DiFazio S, Duplessis S, Fraissinet-Tachet L, Lucic E, Frey-Klett P, Fourrey C, Feussner I, Gay G, Gibon J, Grimwood J, Hoegger P, Jain P, Kilaru S, Labbé J, Lin Y, Le Tacon F, Marmeisse R, Melayah D, Montanini B, Muratet M, Nehls U, Niculita-Hirzel H, Oudot-Le Secq MP, Pereda VP, Peter M, Quesneville H, Rajashekar B, Reich M, Rouhier N, Schmutz J, Yin T, Chalot M, Henrissat B, Kües U, Lucas S, Van de Peer Y, Podila G, Polle A, Pukkila PJ, Richardson PM, Rouzé P, Sanders I, Stajich JE, Tunlid A, Tuskan G, Grigoriev I (2008) The genome sequence of the basidiomycete fungus Laccaria bicolor provides insights into the mycorrhizal symbiosis. Nature 452:88–92PubMedCrossRefGoogle Scholar
  85. Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani R, Porcel B, Rubini A, Amicucci A, Amselem J, Anthouard V, Arcioni S, Artiguenave F, Aury J-M, Ballario P, Bolchi A, Brenna A, Brun A, Buee M, Cantarel B, Chevalier G, Couloux A, Da Silva C, Denoeud F, Duplessis S, Ghignone S, Hilselberger B, Iotti M, Marcais B, Mello A, Miranda M, Pacioni G, Quesneville H, Riccioni C, Ruotolo R, Splivallo R, Stocchi V, Tisserant E, Viscomi AR, Zambonelli A, Zampieri E, Henrissat B, Lebrun M-H, Paolocci F, Bonfante P, Ottonello S, Wincker P (2010) Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038PubMedCrossRefGoogle Scholar
  86. Martin F, Cullen D, Hibbett D, Pisabarro A, Spatafora JW, Baker SE, Grigoriev IV (2011) Sequencing the fungal tree of life. New Phytol 190:818–821PubMedCrossRefGoogle Scholar
  87. Melin E, Nilsson H (1957) Transport of C14-labelled photosynthate to the fungal associate of pine mycorrhiza. Svensk Bot Tidskr 51:166–186Google Scholar
  88. Nagendran S, Hallen-Adams H, Paper J, Aslam N, Walton J (2009) Reduced genomic potential for secreted plant cell-wall-degrading enzymes in the ectomycorrhizal fungus Amanita bisporigera, based on the secretome of Trichoderma reesei. Fungal Genet Biol 46:427–435PubMedCrossRefGoogle Scholar
  89. Nehls U (2004) Carbohydrates and nitrogen: nutrients and signals in ectomycorrhizas. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Berlin, pp 373–392Google Scholar
  90. Nehls U (2008) Mastering ectomycorrhizal symbiosis: the impact of carbohydrates. J Exp Bot 59:1097–1108PubMedCrossRefGoogle Scholar
  91. Nehls U, Wiese J, Guttenberger M, Hampp R (1998) Carbon allocation in ectomycorrhizas: identification and expression analysis of an Amanita muscaria monosaccharide transporter. Molec Plant Microbe Interact 11:167–176CrossRefGoogle Scholar
  92. Nehls U, Ecke M, Hampp R (1999a) Sugar- and nitrogen-dependent regulation of an Amanita muscaria phenylalanine ammonium lyase gene. J Bacteriol 181:1931–1933PubMedGoogle Scholar
  93. Nehls U, Kleber R, Wiese J, Hampp R (1999b) Isolation and characterization of a general amino acid permease from the ectomycorrhizal fungus Amanita muscaria. New Phytol 144:343–349CrossRefGoogle Scholar
  94. Nehls U, Bock A, Einig W, Hampp R (2001) Excretion of two proteases by the ectomycorrhizal fungus Amanita muscaria. Plant Cell Environ 24:741–747CrossRefGoogle Scholar
  95. Nehls U, Grunze N, Willmann M, Reich M, Küster H (2007) Sugar for my honey: carbohydrate partitioning in ectomycorrhizal symbiosis. Phytochemistry 68:82–91PubMedCrossRefGoogle Scholar
  96. Nehls U, Göhringer F, Wittulsky S, Dietz S (2010) Fungal carbohydrate support in the ectomycorrhizal symbiosis: a review. Plant Biol 12:292–301PubMedCrossRefGoogle Scholar
  97. Nilsson LO, Wallander H (2003) Production of external mycelium by ectomycorrhizal fungi in a Norway spruce forest was reduced in response to nitrogen fertilization. New Phytol 158:409–416CrossRefGoogle Scholar
  98. Nilsson LO, Giesler R, Baath E, Wallander H (2005) Growth and biomass of mycorrhizal mycelia in coniferous forests along short natural nutrient gradients. New Phytol 165:613–622PubMedCrossRefGoogle Scholar
  99. Norton JM, Smith JL, Firestone MK (1990) Carbon flow in the rhizosphere of ponderosa pine seedlings. Soil Biol Biochem 22:449–455CrossRefGoogle Scholar
  100. Palmer JG, Hacskaylo E (1970) Ectomycorrhizal fungi in pure culture I. Growth on single carbon sources. Physiol Plant 23:1187–1197Google Scholar
  101. Parrent JL, James TY, Vasaitis R, Taylor AFS (2009) Friend or foe? Evolutionary history of glycoside hydrolase family 32 genes encoding for sucrolytic activity in fungi and its implications for plant-fungal symbioses. BMC Evol Biol 9:148PubMedCrossRefGoogle Scholar
  102. Plett JM, Martin F (2011) Blurred boundaries: lifestyle lessons from ectomycorrhizal fungal genomes. Trends Genet 27:14–22PubMedCrossRefGoogle Scholar
  103. Polidori E, Ceccaroli P, Saltarelli R, Guescini M, Menotta M, Agostini D, Palma F, Stocchi V (2007) Hexose uptake in the plant symbiotic ascomycete Tuber borchii Vittadini: biochemical features and expression pattern of the transporter TBHXT1. Fungal Genet Biol 44:187–198PubMedCrossRefGoogle Scholar
  104. Pritsch K, Raidl S, Marksteiner E, Blaschke H, Agerer R, Schloter M, Hartmann A (2004) A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4-methylumbelliferonelabelled fluorogenic substrates in a microplate system. J Microbiol Methods 58:233–241PubMedCrossRefGoogle Scholar
  105. Rangel-Castro JI, Danell E, Pfeffer PE (2002) A 13C-NMR study of exudation and storage of carbohydrates and amino acids in the ectomycorrhizal edible mushroom Cantharellus cibarius. Mycologia 94:190–199PubMedCrossRefGoogle Scholar
  106. Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest. Can J Bot 82(8):1243–1263CrossRefGoogle Scholar
  107. Rieger A, Guttenberger M, Hampp R (1992) Soluble carbohydrates in mycorrhized and non-mycorrhized fine roots of spruce seedlings. Z Naturforsch 47:201–204Google Scholar
  108. Roitsch T, Balibrea ME, Hofmann M, Proels R, Sinha AK (2003) Extracellular invertase: key metabolic enzyme and PR protein. J Exp Bot 54:513–524PubMedCrossRefGoogle Scholar
  109. Ruan Y-L, Jin Y, Yang Y-J, Li G-J, Boyer JS (2010) Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol Plant 3:942–955PubMedCrossRefGoogle Scholar
  110. Sacchi GA, Abruzzese A, Lucchini G, Fiorani F, Cocucci S (2000) Efflux and active re-absorption of glucose in roots of cotton plants grown under saline conditions. Plant Soil 220:1–11CrossRefGoogle Scholar
  111. Salzer P, Hager A (1991) Sucrose utilization of the ectomycorrhizal fungi Amanita muscaria and Hebeloma crustuliniforme depends on the cell wall-bound invertase activity of their host Picea abies. Bot Acta 104:439–445Google Scholar
  112. Salzer P, Hager A (1993) Characterization of wall-bound invertase isoforms of Picea abies cells and regulation by ectomycorrhizal fungi. Physiol Plant 88:52–59CrossRefGoogle Scholar
  113. Schaarschmidt S, Roitsch T, Hause B (2006) Arbuscular mycorrhiza induces gene expression of the apoplastic invertase LIN6 in tomato (Lycopersicon esculentum) roots. J Exp Bot 57:4015–4023PubMedCrossRefGoogle Scholar
  114. Schaarschmidt S, Gonzalez MC, Roitsch T, Strack D, Sonnewald U, Hause B (2007) Regulation of arbuscular mycorrhization by carbon. The symbiotic interaction cannot be improved by increased carbon availability accomplished by root-specifically enhanced invertase activity. Plant Physiol 143:1827–1840PubMedCrossRefGoogle Scholar
  115. Schaeffer C, Wallenda T, Guttenberger M, Hampp R (1995) Acid invertase in mycorrhizal and non-mycorrhizal roots of Norway spruce (Picea abies [L.] Karst.) seedlings. New Phytol 129:417–424CrossRefGoogle Scholar
  116. Schaeffer C, Johann P, Nehls U, Hampp R (1996) Evidence for an up-regulation of the host and a down-regulation of the fungal phosphofructokinase activity in ectomycorrhizas of Norway spruce and fly agaric. New Phytol 134:697–702CrossRefGoogle Scholar
  117. Schaeffer C, Wallenda T, Hampp R, Salzer P, Hager A (1997) Carbon allocation in ectomycorrhizae. In: Rennenberg H, Eschrich W, Ziegler H (eds) Trees – contributions to modern tree physiology. Backhuys, Leiden, pp 393–407Google Scholar
  118. Scharte J, Schön H, Weis E (2005) Photosynthesis and carbohydrate metabolism in tobacco leaves during an incompatible interaction with Phytophthora nicotianae. Plant Cell Environ 28:1421–1435CrossRefGoogle Scholar
  119. Seo Y, Cho J, Lee SK, Ryu H, Han M, Hahn T, Sonnewald U, Jeon J (2007) Current insights into the primary carbon flux that occurs in plants undergoing a defense response. Plant Stress 1:42–49Google Scholar
  120. Smeekens S, Ma J, Hanson J, Rolland F (2010) Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol 13:273–278CrossRefGoogle Scholar
  121. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, LondonGoogle Scholar
  122. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, LondonGoogle Scholar
  123. Smith FA, Smith SE (1989) Membrane transport at the biotrophic interface: an overview. Austral J Plant Physiol 16:33–43CrossRefGoogle Scholar
  124. Söderström B (1992) The ecological potential of the ectomycorrhizal mycelium. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, Wallingford, pp 77–83Google Scholar
  125. Spägele S (1992) Charakterisierung der intra- und extrazellulären Proteasenaktivitäten des Fliegenpilzes (Amanita muscaria [L. ex Fr.] Hooker). Eberhard Karls University, TübingenGoogle Scholar
  126. Straker CJ, Schnippenkoetter WH, Lemoine M-C (1992) Analysis of acid invertase and comparison with acid phosphatase in the ericoid mycorrhizal fungus Hymenoscyphus ericae (Read) Korf and Kernan. Mycorrhiza 2:63–67CrossRefGoogle Scholar
  127. Stülten C (1996) Aufnahme und Metabolisierung von Kohlenhydraten und Aminosäuren durch den Ektomykorrhizapilz Cenococcum geophilum Stamm SIV. Eberhard Karls University, TübingenGoogle Scholar
  128. Tarkka M, Nehls U, Hampp R (2005) Physiology of Ectomycorrhiza (ECM). In: Lüttge U (ed) Progress in botany. Springer, Berlin, pp 247–276CrossRefGoogle Scholar
  129. Tetlow IJ, Farrar JF (1992) Sucrose-metabolizing enzymes from leaves of barley infected with brown rust (Puccinia hordei Otth.). New Phytol 120:475–480CrossRefGoogle Scholar
  130. Treseder KK, Torn MS, Masiello CA (2006) An ecosystem-scale radiocarbon tracer to test use of litter carbon by ectomycorrhizal fungi. Soil Biol Biochem 38:1077–1082CrossRefGoogle Scholar
  131. Trojanowski J, Haider K, Hüttermann A (1984) Decomposition of 14C-labelled lignin, holocellulose and lignocellulose by mycorrhizal fungi. Arch Microbiol 139:202–206CrossRefGoogle Scholar
  132. Truernit E, Sauer N (1995) The promotor of the Arabidopsis thaliana SUC2 sucrose-H+ symporter gene directs expression of β-glucuronidase to the phloem: evidence for phloem loading and unloading by SUC2. Planta 196:564–570PubMedCrossRefGoogle Scholar
  133. Tymowska-Lalanne Z, Kreis M (1998) Expression of the Arabidopsis thaliana invertase gene family. Planta 207:259–265PubMedCrossRefGoogle Scholar
  134. Uldry M, Thorens B (2004) The SLC2 family of facilitated hexose and polyol transporters. Eur J Physiol 447:480–489CrossRefGoogle Scholar
  135. van Hees P, Jones D, Finlay R, Godbold D, Lundström U (2005) The carbon we do not see-the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review. Soil Biol Biochem 37:1–13CrossRefGoogle Scholar
  136. Voegele RT, Struck C, Hahn M, Mendgen K (2001) The role of haustoria in sugar supply during infection of broad bean by the rust fungus Uromyces fabae. Proc Natl Acad Sci 98:8133–8138PubMedCrossRefGoogle Scholar
  137. Wainwright M (1993) Oligotrophic growth of fungi – stress or natural state. In: Jennings DH (ed) Stress tolerance of fungi. Dekker, New York, pp 127–144Google Scholar
  138. Wallander H (2006) External mycorrhizal mycelia – the importance of quantification in natural ecosystems. New Phytol 171:240–242PubMedCrossRefGoogle Scholar
  139. Wallander H, Nilsson LO, Hagerberg D, Baath E (2001) Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol 151:753–760CrossRefGoogle Scholar
  140. Wallander H, Göransson H, Rosengren U (2004) Production, standing biomass and natural abundance of 15N and 13C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia 139:89–97PubMedCrossRefGoogle Scholar
  141. Wallenda T (1996) Untersuchungen zur Physiologie der Pilzpartner von Ektomykorrhizen der Fichte (Picea abies [L.] Karst.). PhD thesis, Eberhard Karls University, TübingenGoogle Scholar
  142. Wallenda T, Kottke I (1998) Nitrogen deposition and ectomycorrhizas. New Phytol 139:169–187CrossRefGoogle Scholar
  143. Wallenda T, Read DJ (1999) Kinetics of amino acid uptake by ectomycorrhizal roots. Plant Cell Environ 22:179–187CrossRefGoogle Scholar
  144. Walters DR, Cowley T, McPherson A, Marshall G, McRoberts N (1996) Sugar transport in the light leaf spot pathogen Pyrenopeziza brassicae. FEBS Microbiol Lett 143:285–289Google Scholar
  145. Wiemken A (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Leeuwenhoek 58:209–217PubMedCrossRefGoogle Scholar
  146. Wiese J, Kleber R, Hampp R, Nehls U (2000) Functional characterization of the Amanita muscaria monosaccharide transporter Am Mst1. Plant Biol 2:1–5CrossRefGoogle Scholar
  147. Wipf D, Benjdia M, Tegeder M, Frommer WB (2002) Characterization of a general amino acid permease from Hebeloma cyclindrosporum. FEBS Lett 528:119–124PubMedCrossRefGoogle Scholar
  148. Wisser G, Guttenberger M, Hampp R, Nehls U (2000) Identification and characterization of an extracellular acid trehalase from the ectomycorrhizal fungus Amanita muscaria. New Phytol 146:169–175CrossRefGoogle Scholar
  149. Wright DP, Read DJ, Scholes JD (1998) Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. Plant Cell Environ 21:881–891CrossRefGoogle Scholar
  150. Wright DP, Scholes JD, Read DJ, Rolfe SA (2000) Changes in carbon allocation and expression of carbon transporter genes in Betula pendula Roth. colonized by the ectomycorrhizal fungus Paxillus involutus (Batsch) Fr. Plant Cell Environ 23:39–49CrossRefGoogle Scholar
  151. Wright DP, Johansson T, Le Quere A, Soderstrom B, Tunlid A (2005) Spatial patterns of gene expression in the extramatrical mycelium and mycorrhizal root tips formed by the ectomycorrhizal fungus Paxillus involutus in association with birch (Betula pendula) seedlings in soil microcosms. New Phytol 167:579–596PubMedCrossRefGoogle Scholar
  152. Wu B, Nara K, Hogetsu T (2002) Spatiotemporal transfer of carbon-14-labelled photosynthate from ectomycorrhizal Pinus densiflora seedlings to extraradical mycelia. Mycorrhiza 12:83–88PubMedCrossRefGoogle Scholar
  153. Zhou Y, Qu H, Dibley KE, Offler CE, Patrick JW (2007) A suite of sucrose transporters expressed in coats of developing legume seeds includes novel pH-independent facilitators. Plant J 49:750–764PubMedCrossRefGoogle Scholar
  154. Zhu H (1990) Purification and characterization of an extracellular acid proteinase from the ectomycorrhizal fungus Hebeloma crustuliniforme. Appl Environ Microbiol 56:837–843PubMedGoogle Scholar
  155. Zhu H, Dancik BP, Higginbotham KO (1994) Regulation of extracellular proteinase production in an ectomycorrhizal fungus Hebeloma crustuliniforme. Mycologia 86:227–234CrossRefGoogle Scholar
  156. Ziegler H (1956) Untersuchungen Über die Leitung und Sekretion der Assimilate. Planta 47:447–500CrossRefGoogle Scholar
  157. Zimmermann M (1961) Movement of organic substances in trees. Sci Total Environ 133:73–79Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Faculty 2, Biology/Chemistry, BotanyUniversity of BremenBremenGermany

Personalised recommendations