17 Bacteria and the Lichen Symbiosis

Chapter
Part of the The Mycota book series (MYCOTA, volume 9)

Abstract

Lichens are more complex symbioses than previously thought. Lichen symbioses include, beside other fungi, significant amounts of bacterial associates. Work in the recent past revealed the diversity of lichen-associated bacterial communities and confirmed their host-specific nature. New knowledge exists about the parameters that contribute to variations in the composition of bacterial communities within and among thalli of the same lichenized fungal species. The biological roles of bacteria in lichens are not clearly validated at present, but first evidence from culture-dependent and culture-independent approaches suggest the contribution of bacteria to several possible functions in the lichen symbiosis. Lichens are also a rich source of new bacterial lineages as well as novel and useful bacterial compounds. Finally we point on the biotechnological potential of lichen-associated bacteria.

Keywords

Bacterial Community Lichen Species nifH Gene Lichen Thalli Culturable Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are grateful to the Austrian Science Foundation for financial support (FWF 19098, FWF I799-B16). We thank Lucia Muggia and Barbara Klug (Graz) for technical assistance.

References

  1. Arnold AE, Miadlikowska J, Higgins KL, Sarvate SD, Gugger P, Way A, Hofstetter V, Kauff F, Lutzoni F (2009) A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Syst Biol 58:283–297PubMedCrossRefGoogle Scholar
  2. An SY, Xiao T, Yokota A (2009) Leifsonia lichenia sp. nov., isolated from lichen in Japan. J Gen Appl Microbiol 55:339–543Google Scholar
  3. Bates ST, Cropsey GWG, Caporaso JG, Knight R, Fierer N (2011) Bacterial communities associated with the lichen symbiosis. Appl Environ Microbiol 77:1309–1314PubMedCrossRefGoogle Scholar
  4. Bjelland T, Grube M, Hoem S, Jorgensen SL, Daae FL, Thorseth IH, Øvreås L (2011) Microbial metacommunities in the lichen–rock habitat. Environ Microbiol Rep 3:434–442CrossRefGoogle Scholar
  5. Cardinale M, Puglia AM, Grube M (2006) Molecular analysis of lichen-associated bacterial communities. FEMS Microbiol Ecol 57:484–495PubMedCrossRefGoogle Scholar
  6. Cardinale M, Müller H, Berg G, de Castro J, Grube M (2008) In situ analysis of the bacteria community associated with the reindeer lichen Cladonia arbuscula reveals predominance of Alphaproteobacteria. FEMS Microbiol Ecol 66:63–71PubMedCrossRefGoogle Scholar
  7. Cardinale M, Grube M, Berg G (2011) Frondihabitans cladoniiphilus sp. nov., a novel actinobacterium of the family Microbacteriaceae isolated from the reindeer lichen Cladonia arbuscula (Wallr.) Rabenh. in the Austrian Alps. Int J Syst Environ Microbiol 61:3033–3038CrossRefGoogle Scholar
  8. Cardinale M, Steinova J, Rabensteiner J, Berg G, Grube M (2012a) Age, sun, and substrate: triggers of bacterial communities in lichens. Environ Microbiol Rep 4:23–28CrossRefGoogle Scholar
  9. Cardinale M, Grube M, Vieira de Castro J, Müller H, Berg G (2012b) Bacterial taxa associated with the lung lichen Lobaria pulmonaria are differentially shaped by geography and habitat. FEMS Microbiol Lett 329:111–115PubMedCrossRefGoogle Scholar
  10. Cengia-Sambo M (1925) Ancora della polisimbiosi nei licheni ad alghe cianoficee. I batteri simbionti. Att Soc Ital Sci Nat 64:191Google Scholar
  11. Cengia-Sambo M (1931) Biologie des lichens. Les substances carbohydratées dans les lichens et la fonction de fixation de l’azote des céphalodies. Boll Sez Ital Soc Internaz Microbiol 11:1–8Google Scholar
  12. Chu H, Fierer N, Lauber CL, Caporaso JG, Knight R, Grogan P (2010) Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ Microbiol 12:2998–3006PubMedCrossRefGoogle Scholar
  13. Davies J, Wang H, Taylor T, Warabi K, Huang XH, Andersen RJ (2005) Uncialamycin, a new enediyne antibiotic. Org Lett 7:5233–5236PubMedCrossRefGoogle Scholar
  14. De la Torre JR, Goebel BM, Friedmann EI, Pace NR (2003) Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 69:3858–3867PubMedCrossRefGoogle Scholar
  15. Farrar JF (1976) The lichen as an ecosystem: observation and experiment. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic, London, pp 385–406Google Scholar
  16. Feuerer T, Hawksworth DL (2007) Biodiversity of lichens, including a world-wide analysis of checklist data based on Takhtajan’s floristic regions. Biodivers Conserv 16:85–98CrossRefGoogle Scholar
  17. Flörke HG (1819) Deutsche lichenen. Vierte Lieferung, Rostock, 15 ppGoogle Scholar
  18. Gasser I, Vieira de Castro Junior J, Müller H, Berg G (2012) Lichen-associated bacteria antagonistic to phytopathogens and their potential to accumulate polyhydroxyalkanoates. IOBC/WPRS Bull (in press)Google Scholar
  19. Girlanda M, Isocrono D, Bianco C, Luppi-Mosca AM (1997) Two foliose lichens as microfungal ecological niches. Mycologia 89:531–536CrossRefGoogle Scholar
  20. Gonzáles I, Ayuso-Sacido A, Anderson A, Genilloud O (2005) Actinomycetes isolated from lichens: evaluation of their diversity and detection of biosynthetic gene sequences. FEMS Microbiol Ecol 54:401–415CrossRefGoogle Scholar
  21. Grube M, Berg G (2009) Microbial consortia of bacteria and fungi with focus on the lichen symbiosis. Fungal Biol Rev 23:72–85CrossRefGoogle Scholar
  22. Grube M, Hawksworth DL (2007) Trouble with lichen: the re-evaluation and re-interpretation of thallus form and fruit body types in the molecular era. Mycol Res 111:1116–1132PubMedCrossRefGoogle Scholar
  23. Grube M, Cardinale M, Vieira De Castro J Junior, Müller H, Berg G (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbiosis. ISME J 3:1105–1115PubMedCrossRefGoogle Scholar
  24. Hawksworth DL, Honegger R (1994) The lichen thallus: a symbiotic phenotype of nutritionally specialized fungi and its response to gall producers. In: Williams MAJ (ed) Plant galls: organisms, interactions, populations. Clarendon, Oxford, pp 77–98Google Scholar
  25. Henckel PA (1946) New observations on the triple nature of lichens. Bull Mosc Soc Nat Biol Ser 51:6Google Scholar
  26. Henckel PA, Plotnikova TT (1973) Nitrogen-fixing bacteria in lichens. Proc Acad Sci USSR Biol Ser 6:807–813Google Scholar
  27. Henckel PA, Yuzhakova LA (1936) On the role of Azotobacter in the lichen symbiosis. Bull Perm Molotov Biol Res Inst 10:315Google Scholar
  28. Hodkinson BP (2011) A phylogenetic, ecological and functional characterization of non-photoautotrophic bacteria in the lichen microbiome. PhD thesis, Duke University, DurhamGoogle Scholar
  29. Hodkinson BP, Lutzoni F (2009) A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. Symbiosis 49:163–180CrossRefGoogle Scholar
  30. Hodkinson BP, Gottel NR, Schadt CW, Lutzoni F (2012) Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome. Environ Microbiol 14:147–161PubMedCrossRefGoogle Scholar
  31. Honegger R (2008) Morphogenesis. In: Nash TH III (ed) Lichen biology, 2nd edn. Cambridge University Press, Cambridge, pp 69–93CrossRefGoogle Scholar
  32. Iskina RY (1938) On nitrogen fixing bacteria in lichens. Bull Perm (Molotov) Biol Res Inst 11:133–139Google Scholar
  33. Krasilnikov NA (1949) Is Azotobacter present in lichens? Mikrobiologiia 18:3Google Scholar
  34. Lambright DD, Kapustka LA (1981) The association of N2-fixing bacteria with Dermatocarpon miniatum and Lepraria sp. Bot Soc Am Misc Ser Pub 160:5Google Scholar
  35. Lang E, Swiderski J, Stackebrandt E, Schumann P, Spöer C, Sahin N (2007) Herminiimonas saxobsidens sp. nov., isolated from a lichen-colonized rock. Int J Syst Evol Microbiol 57:2618–2622PubMedCrossRefGoogle Scholar
  36. Lavallée VP (2011) Antipain and its analogues, natural product inhibitors of Cathepsin K isolated from Streptomyces. PhD thesis, University of British Columbia, VancouverGoogle Scholar
  37. Lawrey JD, Diederich P (2003) Lichenicolous fungi: interactions, evolution, and biodiversity. Bryologist 106:81–120CrossRefGoogle Scholar
  38. Lenova LI, Blum O (1983) To the question on the third component of lichens. Bot J 68:21–28Google Scholar
  39. Li B, Xie CH, Yokota A (2007) Nocardioides exalbidus sp. nov., a novel actinomycete isolated from lichen in Izu-Oshima Island, Japan. Actinomycetologica 1:22–26CrossRefGoogle Scholar
  40. Liba CM, Ferrara FIS, Manfio GP, Fantinatti-Garboggini F, Albuquerque RC, Pavan C, Ramos PL, Moreira CA, Barbosa HR (2006) Nitrogen-fixing chemo-organotrophic bacteria isolated from cyanobacteria-deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohormones. J Appl Microbiol 101:1076–1086PubMedCrossRefGoogle Scholar
  41. McCurdy HD (1971) Studies on the taxonomy of the Myxobacterales. IV. Melittangium. Int J Syst Bacteriol 21:50–54CrossRefGoogle Scholar
  42. McDonald T, Dietrich F, Lutzoni F (2012) Multiple horizontal gene transfers of ammonium transporters/ammonia permeases from prokaryotes to eukaryotes: toward a new functional and evolutionary classification. Mol Biol Evol 29:51–60PubMedCrossRefGoogle Scholar
  43. Millbank JW, Kershaw KA (1969) Nitrogen metabolism in lichens. I. Nitrogen fixation in the cephalodia of Peltigera aphthosa. New Phytol 68:721–729CrossRefGoogle Scholar
  44. Motohashi K, Takagi M, Yamamura H, Hayakawa M, Shin-ya K (2010) A new angucycline and a new butenolide isolated from lichen-derived Streptomyces spp. J Antibiot 63:545–548PubMedCrossRefGoogle Scholar
  45. Mushegian AA, Peterson CN, Baker CCM, Pringle A (2011) Bacterial diversity across individual lichens. Appl Environ Microbiol 77:4249–4252PubMedCrossRefGoogle Scholar
  46. Navahradak DM (1949) Lichens and cellulose degrading microorganisms. Microbiology (Moscow) 18:6Google Scholar
  47. Nicolaou KC, Zhang H, Chen JS, Crawford JJ, Pasunoori L (2007) Total synthesis and stereochemistry of uncialamycin. Angew Chem Int Ed 46:4704–4707CrossRefGoogle Scholar
  48. Pankratov TA (2012) Acidobacteria in the microbial communities of the bog and tundra lichens [in Russian]. Mikrobiologiya 81:56–63Google Scholar
  49. Panosyan AK, Nikogosyan VG (1966) The presence of Azotobacter in lichens. Akad Nauk Armian SSR, Biol Zhurn Armen 19:3–11Google Scholar
  50. Petrini O, Hake U, Dreyfuss MM (1990) An analysis of fungal communities isolated from fruticose lichens. Mycologia 82:444–451CrossRefGoogle Scholar
  51. Poelt J, Mayrhofer H (1988) Über Cyanotrophie bei Flechten. Plant Syst Evol 158:265–281CrossRefGoogle Scholar
  52. Prillinger H, Kraepelin G, Lopandic K, Schweigkofler W, Molnar O, Weigang F, Dreyfuss MM (1997) New species of Fellomyces isolated from epiphytic lichen species. Syst Appl Microbiol 20:572–584CrossRefGoogle Scholar
  53. Printzen C, Fernández-Mendoza F, Muggia L, Berg G, Grube M (2012) Alphaproteobacterial communities in geographically distant populations of the lichen Cetraria aculeata. FEMS Microbial Ecol, http://www.ncbi.nlm.nih.gov/pubmed/22469494
  54. Ryan KS (2011) Biosynthetic gene cluster for the cladoniamides, bis-indoles with a rearranged scaffold. PLoS One 6:e23694PubMedCrossRefGoogle Scholar
  55. Schmitt I, Lumbsch HT (2009) Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi. PLoS One 4:e4437PubMedCrossRefGoogle Scholar
  56. Schneider T, Schmid E, de Castro V, Junior J, Cardinale M, Eberl L, Grube M, Berg G, Riedel K (2011) Structure and function of the symbiosis partners of the lung lichen (Lobaria pulmonaria L. Hoffm.) analyzed by metaproteomics. Proteomics 11:2752–2756PubMedCrossRefGoogle Scholar
  57. Schwendener S (1869) Die Algentypen der Flechtengonidien, vol 4. C. Schultze, BaselGoogle Scholar
  58. Scott GD (1956) Further investigations of some lichens for fixation of nitrogen. New Phytol 55:111–116CrossRefGoogle Scholar
  59. Selbmann L, Zucconi L, Ruisi S, Grube M, Cardinale M, Onofri S (2010) Culturable bacteria associated with Antarctic lichens: affiliation and psychrotolerance. Polar Biol 33:71–83CrossRefGoogle Scholar
  60. Seneviratne G, Indrasena IK (2006) Nitrogen fixation in lichens is important for improved rock weathering. J Biosci 31:639–643PubMedCrossRefGoogle Scholar
  61. Steinbüchel A, Valentin HE (2006) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228CrossRefGoogle Scholar
  62. Suessenguth K (1926) Zur Frage der Vergesellschaftung von Flechten mit Purpurbakterien. Ber Dtsch Bot Ges 44:573–578Google Scholar
  63. Thaxter R (1892) On the Myxobacteriaceae, a new order of Schizomycetes. Bot Gaz 17:389–406CrossRefGoogle Scholar
  64. Uphof JCT (1925) Purple bacteria as symbionts of a lichen. Science 61:67PubMedCrossRefGoogle Scholar
  65. Williams DE, Davies J, Patrick BO, Bottriell H, Tarling T, Roberge M, Andersen RJ (2008) Cladoniamides A-G, tryptophan-derived alkaloids produced in culture by Streptomyces uncialis. Org Lett 10:3501–3504PubMedCrossRefGoogle Scholar
  66. Yamamura H, Haruna Ashizawa H, Nakagawa Y, Hamada M, Ishida Y, Otoguro M, Tamura T, Hayakawa M (2011) Actinomycetospora rishiriensis sp. nov., an actinomycete isolated from a lichen. IJSEM 61:2621–2625PubMedGoogle Scholar
  67. Yuan X, Xiao S, Taylor TN (2005) Lichen-like symbiosis 600 million years ago. Science 308:1017–1020PubMedCrossRefGoogle Scholar
  68. Zook PD (1983) A study of the role of bacteria in lichens. MA thesis, Clark University, WorcesterGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Plant SciencesKarl-Franzens UniversityGrazAustria
  2. 2.Institute of Environmental BiotechnologyGraz University of TechnologyGrazAustria

Personalised recommendations