Advertisement

Virtual Validation of the Manual Assembly of a Power Electronic Unit via Motion Capturing Connected with a Simulation Tool Using a Human Model

  • Jochen BönigEmail author
  • Christian Fischer
  • Matthias Brossog
  • Martin Bittner
  • Markus Fuchs
  • Holger Weckend
  • Jörg Franke
Part of the Lecture Notes in Production Engineering book series (LNPE)

Abstract

A key challenge for gaining important time and cost potentials in production engineering projects is an early virtual validation during the pre-series. Under the premise to replace physical by digital mock-ups, we will present requirements and solutions of a virtual validation focused on manual assembly of power electronics in automotive industry. Using a digital human model for dynamic analysis is not very prevalent, because of the high modeling complexity in the digital environment. The resulting motions of the human model are furthermore unrealistic. Hence the need for research is a time saving and, regardless, a realistic movement design for virtual validation by a human model. To achieve this goal, we use an experimental setup including a variable eight camera motion capture system, a data glove and an interface for the connection to the digital validation software.

Keywords

virtual validation manual assembly motion capture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wack, K.-J., Bär, T., Straßburger, S.: Limitations of digital ramp-up validation. In: Zülch, G., Stock, P. (eds.) Integration Aspects of Simulation: Equipment, Organization and Personnel, October 7-8, pp. 45–52. KIT Scientific Publ., Karlsruhe (2010)Google Scholar
  2. 2.
    Bönig, J., Fischer, C., Marquardt, V., Matzka, S., Franke, J.: Methodical Integration of Assembly Specific Influences concerning High-Voltage Components into the Virtual Validation Process. In: Franke, J. (ed.) 2nd International Electric Drives Production Conference, EDPC 2012, Nuremberg, October 16-17 (2012)Google Scholar
  3. 3.
    Mühlstedt, J., Kaußler, H., Spanner-Ulmer, B.: Programme in Menschengestalt: digitale Menschmodelle für CAx- und PLM-Systeme. The software incarnate. Zeitschrift für Arbeitswissenschaft 62(2), 79–86 (2008)Google Scholar
  4. 4.
    Chaffin, D.B.: Digital human modeling for vehicle and workplace design. In: SAE-R, vol. 276. Society of Automotive Engineers, Warrendale (2001)Google Scholar
  5. 5.
    Chaffin, D.B.: Improving digital human modelling for proactive ergonomics in design. Ergonomics 48(5), 478–491 (2005), doi:10.1080/00140130400029191CrossRefGoogle Scholar
  6. 6.
    Farell, K.: Kinematic Human Modeling and Simulation using Optimization-Based Posture Prediction. Master Thesis, University of Iowa (2006) (accessed September 14, 2012)Google Scholar
  7. 7.
    Maschke, P.: Herausforderungen in der Montage von Elektrofahrzeugen. Hochvoltkomponenten. ATZ Produktion 3(4), 24–27 (2010)Google Scholar
  8. 8.
    Schlick, C., Bruder, R., Luczak, H.: Arbeitswissenschaft, 3rd edn. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Schreiber, W., Zimmermann, P. (eds.): Virtuelle Techniken im industriellen Umfeld. Springer, Heidelberg (2011)Google Scholar
  10. 10.
    Flick, D.R.: Virtuelle Absicherung manueller Fahrzeugmontagevorgänge mittels 3-D-Menschmodell - Optimierung der Mensch-Computer-Interaktion. Dissertation, Technische Universität München (2010) (accessed February 21, 2012)Google Scholar
  11. 11.
    Riedl, M.: Potential eines virtuellen Fahrerplatzmodells in der Fahrzeugkonzeptentwicklung. Dissertation, Technische Universität München (accessed August 27, 2012)Google Scholar
  12. 12.
    Advanced Realtime Tracking GmbH: ART DTrack2 user manualGoogle Scholar
  13. 13.
    CyberGlove Systems LLC: CyberGlove® II Wireless Data Glove - User Guide (2009)Google Scholar
  14. 14.
    Fuchs, P., Moreau, G., Guitton, P.: Virtual reality. Concepts and technologies. CRC Press, Boca Raton (2011)Google Scholar
  15. 15.
    Haption: Real-Time Interaction for Delmia Human, RTID (2012)Google Scholar
  16. 16.
    Haption: Interactive Physics Simulation Interface, IPSI (2012)Google Scholar
  17. 17.
    Kühn, W.: Digitale Fabrik. Fabriksimulation für Produktionsplaner. Hanser, München (2006)CrossRefGoogle Scholar
  18. 18.
    Dassault Systemes: DELMIA: Virtual Ergonomics Solution (2008), http://www.3ds.com/fileadmin/PRODUCTS/DELMIA/OFFERS/Virtual-Ergonomics-Solutions/PDF/DELMIA-Virtual-Ergonomics-brochure.pdf (accessed August 29, 2012)
  19. 19.
    Härtel, T., Keil, A., Hoffmeyer, A., Toledo Munoz, B.: Capturing and Assessment of Human Motion during Manual Assembly Operation. In: First International Symposium on Digital Human Modeling, Lyon, France, June 14-16 (2011)Google Scholar
  20. 20.
    McAtamney, L., Corlett, E.N.: RULA: a survey method for the investigation of world-related upper limb disorders. Applied Ergonomics 24(2), 91–99 (1993)CrossRefGoogle Scholar
  21. 21.
    Schaub, K., Caragnano, G., Britzke, B., Bruder, R.: The European Assembly Worksheet. Theoretical Issues in Ergonomics Science, 1–23 (2012)Google Scholar
  22. 22.
    Dell GmbH, http://www.dell.de (accessed August 23, 2012)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jochen Bönig
    • 1
    Email author
  • Christian Fischer
    • 1
  • Matthias Brossog
    • 1
  • Martin Bittner
    • 1
  • Markus Fuchs
    • 1
  • Holger Weckend
    • 1
  • Jörg Franke
    • 1
  1. 1.Institute for Factory Automation and Production SystemsFriedrich-Alexander-University of Erlangen-NurembergErlangenGermany

Personalised recommendations