Beyond Lassos: Complete SMT-Based Bounded Model Checking for Timed Automata

  • Roland Kindermann
  • Tommi Junttila
  • Ilkka Niemelä
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7273)

Abstract

Timed automata (TAs) are a common formalism for modeling timed systems. Bounded model checking (BMC) is a verification method that searches for runs violating a property using a SAT or SMT solver. Previous SMT-based BMC approaches for TAs search for finite counter-examples and infinite lasso-shaped counter-examples. This paper shows that lasso-based BMC cannot detect counter-examples for some linear time specifications expressed, e.g., with LTL or Büchi automata. This paper introduces a new SMT-based BMC approach that can find a counter-example to any non-holding Büchi automaton or LTL specification and also, in theory, prove that a specification holds. Different BMC encodings tailored for the supported features of different SMT solvers are compared experimentally to lasso-based BMC and discretization-based SAT BMC.

References

  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Alur, R.: Timed Automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 8–22. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Bengtsson, J., Yi, W.: Timed Automata: Semantics, Algorithms and Tools. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Behrmann, G., Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Efficient Timed Reachability Analysis Using Clock Difference Diagrams. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 341–353. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Beyer, D., Noack, A.: Can Decision Diagrams Overcome State Space Explosion in Real-Time Verification? In: König, H., Heiner, M., Wolisz, A. (eds.) FORTE 2003. LNCS, vol. 2767, pp. 193–208. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Woźna, B., Zbrzezny, A., Penczek, W.: Checking reachability properties for timed automata via SAT. Fundamenta Informatica 55(2), 223–241 (2003)MATHGoogle Scholar
  9. 9.
    Sorea, M.: Bounded model checking for timed automata. Electronic Notes in Theoretical Computer Science 68(5) (2002)Google Scholar
  10. 10.
    Audemard, G., Cimatti, A., Kornilowicz, A., Sebastiani, R.: Bounded Model Checking for Timed Systems. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 243–259. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Malinowski, J., Niebert, P.: SAT Based Bounded Model Checking with Partial Order Semantics for Timed Automata. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 405–419. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Kindermann, R., Junttila, T., Niemelä, I.: Modeling for symbolic analysis of safety instrumented systems with clocks. In: ACSD 2011, pp. 185–194. IEEE (2011)Google Scholar
  13. 13.
    Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Satisfiability, pp. 825–885. IOS Press (2009)Google Scholar
  14. 14.
    Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (1999)Google Scholar
  16. 16.
    Biere, A., Heljanko, K., Junttila, T., Latvala, T., Schuppan, V.: Linear encodings of bounded LTL model checking. Logical Methods in Computer Science 2(5:5), 1–64 (2006)MathSciNetGoogle Scholar
  17. 17.
    Dutertre, B., de Moura, L.M.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Clarke, E.M., Kroning, D., Ouaknine, J., Strichman, O.: Completeness and Complexity of Bounded Model Checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 85–96. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Tripakis, S., Yovine, S., Bouajjani, A.: Checking timed büchi automata emptiness efficiently. Formal Methods in System Design 26(3), 267–292 (2005)MATHCrossRefGoogle Scholar
  20. 20.
    Larsen, K.G., Pettersson, P., Yi, W.: Model-checking for Real-Time Systems. In: Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 62–88. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  21. 21.
    Lahtinen, J., Björkman, K., Valkonen, J., Frits, J., Niemelä, I.: Analysis of an emergency diesel generator control system by compositional model checking. VTT Working Papers 156, VTT Technical Research Centre of Finland (2010)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Roland Kindermann
    • 1
  • Tommi Junttila
    • 1
  • Ilkka Niemelä
    • 1
  1. 1.Department of Information and Computer ScienceAalto UniversityAaltoFinland

Personalised recommendations