Rectangular hybrid automata (RHA) are finite state machines with additional skewed clocks that are useful for modeling realtime systems. This paper is concerned with the uniform verification of safety properties of networks with arbitrarily many interacting RHAs. Each automaton is equipped with a finite collection of pointers to other automata that enables it to read their state. This paper presents a small model result for such networks that reduces the verification problem for a system with arbitrarily many processes to a system with finitely many processes. The result is applied to verify and discover counterexamples of inductive invariant properties for distributed protocols like Fischer’s mutual exclusion algorithm and the Small Aircraft Transportation System (SATS).We have implemented a prototype tool called Passel relying on the satisfiability modulo theories (SMT) solver Z3 to check inductive invariants automatically.


hybrid automata parameterized verification small model theorem uniform verification 


  1. 1.
    Abbott, T.S., Jones, K.M., Consiglio, M.C., Williams, D.M., Adams, C.A.: Small aircraft transportation system, higher volume operations concept: Normal operations. Tech. Rep. NASA/TM-2004-213022, NASA (August 2004)Google Scholar
  2. 2.
    Abdulla, P., Delzanno, G., Rezine, A.: Parameterized Verification of Infinite-State Processes with Global Conditions. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 145–157. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Abdulla, P.A., Deneux, J., Mahata, P.: Multi-clock timed networks. In: Proc. of 19th Annual IEEE Symposium Logic in Computer Science, pp. 345–354 (July 2004)Google Scholar
  4. 4.
    Abdulla, P.A., Jonsson, B.: Model checking of systems with many identical timed processes. Theoretical Computer Science 290(1), 241–264 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138(1), 3–34 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  7. 7.
    Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent systems. Inf. Process. Lett. 22(6), 307–309 (1986)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.: Parameterized Verification with Automatically Computed Inductive Assertions. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 221–234. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Balaban, I., Fang, Y., Pnueli, A., Zuck, L.: IIV: An Invisible Invariant Verifier. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 408–412. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Bjørner, N.: Linear Quantifier Elimination as an Abstract Decision Procedure. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 316–330. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer (2001)Google Scholar
  12. 12.
    Brown, G., Pike, L.: Easy Parameterized Verification of Biphase Mark and 8N1 Protocols. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 58–72. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Bruttomesso, R., Carioni, A., Ghilardi, S., Ranise, S.: Automated Analysis of Parametric Timing-Based Mutual Exclusion Algorithms. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 279–294. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Carioni, A., Ghilardi, S., Ranise, S.: MCMT in the land of parameterized timed automata. In: Proc. of VERIFY 2010 (July 2010)Google Scholar
  15. 15.
    Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)Google Scholar
  16. 16.
    de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    De Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and applications. Commun. ACM 54, 69–77 (2011)CrossRefGoogle Scholar
  18. 18.
    Delzanno, G.: Automatic Verification of Parameterized Cache Coherence Protocols. In: Emerson, E., Sistla, A. (eds.) CAV 2000. LNCS, vol. 1855, pp. 53–68. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Donaldson, A., Haller, L., Kroening, D., Rümmer, P.: Software Verification Using k-Induction. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 351–368. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Dutertre, B., Sorea, M.: Timed systems in sal. Tech. Rep. SRI-SDL-04-03, SRI International (October 2004)Google Scholar
  21. 21.
    Faber, J., Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: Automatic Verification of Parametric Specifications with Complex Topologies. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 152–167. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Frehse, G.: PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable Verification of Hybrid Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Ge, Y., de Moura, L.: Complete Instantiation for Quantified Formulas in Satisfiabiliby Modulo Theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 306–320. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Grinchtein, O., Leucker, M.: Network invariants for real-time systems. Formal Aspects of Computing 20, 619–635 (2008)zbMATHCrossRefGoogle Scholar
  26. 26.
    Hanna, Y., Samuelson, D., Basu, S., Rajan, H.: Automating Cut-off for Multi-parameterized Systems. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 338–354. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Henzinger, T.A.: The theory of hybrid automata. In: IEEE Symposium on Logic in Computer Science (LICS), p. 278. IEEE Computer Society, Washington, DC (1996)Google Scholar
  28. 28.
    Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Hytech: a model checker for hybrid systems. Journal on Software Tools for Technology Transfer 1, 110–122 (1997)zbMATHCrossRefGoogle Scholar
  29. 29.
    Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? Journal of Computer and System Sciences 57, 94–124 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Johnson, T.T., Mitra, S.: Safe flocking in spite of actuator faults using directional failure detectors. Journal of Nonlinear Systems and Applications 2(1-2), 73–95 (2011)Google Scholar
  31. 31.
    Johnson, T.T., Mitra, S.: Parameterized verification of distributed cyber-physical systems: An aircraft landing protocol case study. In: ACM/IEEE 3rd International Conference on Cyber-Physical Systems (April 2012)Google Scholar
  32. 32.
    Loos, S.M., Platzer, A., Nistor, L.: Adaptive Cruise Control: Hybrid, Distributed, and Now Formally Verified. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 42–56. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  33. 33.
    Manamcheri, K., Mitra, S., Bak, S., Caccamo, M.: A step towards verification and synthesis from simulink/stateflow models. In: Proc. of the 14th Intl. Conf. on Hybrid Systems: Computation and Control, pp. 317–318. ACM (2011)Google Scholar
  34. 34.
    Muñoz, C., Carreño, V., Dowek, G.: Formal analysis of the operational concept for the small aircraft transportation system. In: Butler, M., Jones, C., Romanovsky, A., Troubitsyna, E. (eds.) Fault-Tolerant Systems, LNCS, vol. 4157, pp. 306–325. Springer Berlin / Heidelberg (2006)CrossRefGoogle Scholar
  35. 35.
    Platzer, A.: Quantified Differential Dynamic Logic for Distributed Hybrid Systems. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 469–483. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  36. 36.
    Platzer, A.: Quantified differential invariants. In: Proc. of the 14th ACM Intl. Conf. on Hybrid Systems: Computation and Control, pp. 63–72. ACM (2011)Google Scholar
  37. 37.
    Pnueli, A., Ruah, S., Zuck, L.: Automatic Deductive Verification with Invisible Invariants. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 82–97. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  38. 38.
    Umeno, S., Lynch, N.: Safety Verification of an Aircraft Landing Protocol: A Refinement Approach. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 557–572. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  39. 39.
    Viken, S., Brooks, F.: Demonstration of four operating capabilities to enable a small aircraft transportation system. In: The 24th Digital Avionics Systems Conference, DASC 2005, vol. 2 (October 2005)Google Scholar
  40. 40.
    Wolper, P., Lovinfosse, V.: Verifying Properties of Large Sets of Processes with Network Invariants. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 68–80. Springer, Heidelberg (1990)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Taylor T. Johnson
    • 1
  • Sayan Mitra
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana-ChampaignUSA

Personalised recommendations