A Reversible Abstract Machine and Its Space Overhead

  • Michael Lienhardt
  • Ivan Lanese
  • Claudio Antares Mezzina
  • Jean-Bernard Stefani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7273)

Abstract

We study in this paper the cost of making a concurrent programming language reversible. More specifically, we take an abstract machine for a fragment of the Oz programming language and make it reversible. We show that the overhead of the reversible machine with respect to the original one in terms of space is at most linear in the number of execution steps. We also show that this bound is tight since some programs cannot be made reversible without storing a commensurate amount of information.

References

  1. 1.
    Altenkirch, T., Grattage, J.: A functional quantum programming language. In: Proc. of LICS 2005 (2005)Google Scholar
  2. 2.
    Axelsen, H.B.: Clean Translation of an Imperative Reversible Programming Language. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601, pp. 144–163. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Axelsen, H.B., Glück, R., Yokoyama, T.: Reversible Machine Code and Its Abstract Processor Architecture. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 56–69. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Bennett, C.H.: Notes on the history of reversible computation. IBM Journal of Research and Development 32(1) (1988)Google Scholar
  5. 5.
    Brown, A.B., Patterson, D.A.: Undo for operators: Building an undoable e-mail store. In: USENIX Annual Technical Conference, General Track. USENIX (2003)Google Scholar
  6. 6.
    Buhrman, H., Tromp, J., Vitányi, P.M.B.: Time and Space Bounds for Reversible Simulation. In: Yu, Y., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 1017–1027. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Danos, V., Krivine, J.: Reversible Communicating Systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Danos, V., Regnier, L.: Reversible, irreversible and optimal lambda-machines. Theor. Comput. Sci. 227(1-2) (1999)Google Scholar
  9. 9.
    Field, J., Varela, C.A.: Transactors: a programming model for maintaining globally consistent distributed state in unreliable environments. In: Proc. of POPL 2005. ACM (2005)Google Scholar
  10. 10.
    Frank, M.P.: Introduction to reversible computing: motivation, progress, and challenges. In: 2nd Conference on Computing Frontiers. ACM (2005)Google Scholar
  11. 11.
    Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.B.: Controlling Reversibility in Higher-Order Pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011 – Concurrency Theory. LNCS, vol. 6901, pp. 297–311. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Lanese, I., Mezzina, C.A., Stefani, J.B.: Reversing Higher-Order Pi. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Leeman, G.B.: A formal approach to undo operations in programming languages. ACM Trans. Program. Lang. Syst. 8(1) (1986)Google Scholar
  14. 14.
    Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 3rd edn. Springer (2008)Google Scholar
  15. 15.
    Ringenburg, M.F., Grossman, D.: AtomCaml: first-class atomicity via rollback. In: Proc. of ICFP 2005. ACM (2005)Google Scholar
  16. 16.
    Van Roy, P., Haridi, S.: Concepts, Techniques and Models of Computer Programming. MIT Press (2004)Google Scholar
  17. 17.
    Vitányi, P.M.B.: Time, space, and energy in reversible computing. In: 2nd Conference on Computing Frontiers. ACM (2005)Google Scholar
  18. 18.
    Yokoyama, T.: Reversible computation and reversible programming languages. Electr. Notes Theor. Comput. Sci. 253(6) (2010)Google Scholar
  19. 19.
    Yokoyama, T., Glück, R.: A reversible programming language and its invertible self-interpreter. In: Proc. of PEPM 2007. ACM (2007)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Michael Lienhardt
    • 1
  • Ivan Lanese
    • 1
  • Claudio Antares Mezzina
    • 2
  • Jean-Bernard Stefani
    • 3
  1. 1.Focus TeamUniversity of Bologna/INRIAItaly
  2. 2.SOA UnitFBKTrentoItaly
  3. 3.INRIA Grenoble-Rhône-AlpesFrance

Personalised recommendations