Advertisement

A Non Invasive, Wearable Sensor Platform for Multi-parametric Remote Monitoring in CHF Patients

  • Héctor Solar
  • Erik Fernández
  • Gennaro Tartarisco
  • Giovanni Pioggia
  • Božidara Cvetković
  • Simon Kozina
  • Mitja Luštrek
  • Jure Lampe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7251)

Abstract

The ageing of European population is now requiring novel solutions that help the healthcare systems face the new challenges. Novel monitoring solutions, combining state-of-the-art technologies will take a main role in the new healthcare models. In the present paper a prototype of an implemented non-invasive, wearable sensor platform for Congestive Heart Failure (CHF) patients is shown and described. The platform monitors all the required parameters from sensors, collects and processes the data in a mobile platform and sends the data to a server.

Keywords

Wearable sensor platform Congestive Heart Failure (CHF) Multiparametric monitoring Electrocardiogram (ECG) Skin temperature Sweat index Activity recognition Energy Expenditure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dickstein, K., Cohen-Solal, A., Filippatos, G., et al.: ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Eur. Heart J. 29, 2388–2442 (2008)CrossRefGoogle Scholar
  2. 2.
    Klersy, C., De Silvestri, A., Gabutti, G., et al.: A meta-analysis of remote monitoring of heart failure patients. J. Am. Coll. Cardiol. 54, 1683–1694 (2009)CrossRefGoogle Scholar
  3. 3.
    Pantelopoulos, A., Bourbakis, N.G.: A Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis. IEEE Trans. on Syst., Man, and Cyber.—Part C: App. and Rev. 40(1), 1–12 (2010)CrossRefGoogle Scholar
  4. 4.
  5. 5.
  6. 6.
    Kozina, S., Luštrek, M., Gams, M.: Dynamical signal segmentation for activity recognition. In: Proceedings STAMI 2011, IJCAI 2011, pp. 93–98 (2011)Google Scholar
  7. 7.
    Bouten, C.V., Westerterp, K.R., Verduin, M., Janssen, J.D.: Assessment of energy expenditure for physical activity using a triaxial accelerometer. Medicine and Science in Sports and Exercise 26, 1516–1523 (1994)Google Scholar
  8. 8.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1), 10–18 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Héctor Solar
    • 1
  • Erik Fernández
    • 2
  • Gennaro Tartarisco
    • 3
  • Giovanni Pioggia
    • 3
  • Božidara Cvetković
    • 4
  • Simon Kozina
    • 4
  • Mitja Luštrek
    • 4
  • Jure Lampe
    • 5
  1. 1.CEITSan SebastiánSpain
  2. 2.LortekOrdiziaSpain
  3. 3.National Research Council of Italy (CNR)Institute of Clinical Physiology (IFC)PisaItaly
  4. 4.Jožef Stefan InstituteLjubljanaSlovenija
  5. 5.Mobili d.o.o.LjubljanaSlovenija

Personalised recommendations