Advertisement

Connecting First-Order ASP and the Logic FO(ID) through Reducts

  • Miroslaw Truszczynski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7265)

Abstract

Recently, an answer-set programming (ASP) formalism of logic programing with the answer-set semantics has been extended to the full first-order setting. Earlier an extension of first-order logic with inductive definitions, the logic FO(ID), was proposed as a knowledge representation formalism and developed as an alternative ASP language. We present characterizations of these formalisms in terms of concepts of infinitary propositional logic. We use them to find a direct connection between the first-order ASP and the logic FO(ID) under some restrictions on the form of theories (programs) considered.

Keywords

Logic Program Logic Programming Propositional Logic Stable Model Relation Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Denecker, M.: The Well-Founded Semantics Is the Principle of Inductive Definition. In: Dix, J., Fariñas del Cerro, L., Furbach, U. (eds.) JELIA 1998. LNCS (LNAI), vol. 1489, pp. 1–16. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Denecker, M.: Extending Classical Logic with Inductive Definitions. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 703–717. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Denecker, M., Lierler, Y., Truszczynski, M., Vennekens, J.: A Tarskian semantics for Answer Set Programming (2012) (a manuscript)Google Scholar
  4. 4.
    Denecker, M., Marek, V., Truszczyński, M.: Approximations, stable operators, well-founded fixpoints and applications in nonmonotonic reasoning. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 127–144. Kluwer Academic Publishers (2000)Google Scholar
  5. 5.
    Denecker, M., Ternovska, E.: A logic for non-monotone inductive definitions. ACM Transactions on Computational Logic 9(2) (2008)Google Scholar
  6. 6.
    Doets, K.: From Logic to Logic Programming. Foundations of Computing Series. MIT Press, Cambridge (1994)zbMATHGoogle Scholar
  7. 7.
    Ferraris, P.: Answer Sets for Propositional Theories. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artif. Intell. 175(1), 236–263 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ferraris, P., Lifschitz, V.: Mathematical foundations of answer set programming. In: Artëmov, S., Barringer, H., d’Avila Garcez, A., Lamb, L.C., Woods, J. (eds.) We Will Show Them! Essays in Honour of Dov Gabbay, pp. 615–664. College Publications (2005)Google Scholar
  10. 10.
    Gelfond, M., Lifschitz, V.: The stable semantics for logic programs. In: Proceedings of the 5th International Conference on Logic Programming (ICLP 1988), pp. 1070–1080. MIT Press (1988)Google Scholar
  11. 11.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 365–385 (1991)CrossRefzbMATHGoogle Scholar
  12. 12.
    Gelfond, M.: Representing Knowledge in A-Prolog. In: Kakas, A.C., Sadri, F. (eds.) Computat. Logic (Kowalski Festschrift) . LNCS (LNAI), vol. 2408, pp. 413–451. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Lierler, Y., Truszczynski, M.: Transition systems for model generators - a unifying approach. Theory and Practice of Logic Programming 11(4-5), 629–646 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm. In: Apt, K., Marek, W., Truszczyński, M., Warren, D. (eds.) The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–398. Springer, Berlin (1999)CrossRefGoogle Scholar
  15. 15.
    Mariën, M., Wittocx, J., Denecker, M., Bruynooghe, M.: SAT(ID): Satisfiability of Propositional Logic Extended with Inductive Definitions. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 211–224. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Niemelä, I.: Logic programming with stable model semantics as a constraint programming paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241–273 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Oikarinen, E., Janhunen, T.: Achieving compositionality of the stable model semantics for Smodels programs. Theory and Practice of Logic Programming 5-6, 717–761 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Pearce, D.: A New Logical Characterisation of Stable Models and Answer Sets. In: Dix, J., Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS, vol. 1216, pp. 57–70. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  19. 19.
    Pearce, D., Valverde, A.: Quantified Equilibrium Logic and Foundations for Answer Set Programs. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 546–560. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2), 81–132 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs. Journal of the ACM 38(3), 620–650 (1991)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Miroslaw Truszczynski
    • 1
  1. 1.Department of Computer ScienceUniversity of KentuckyLexingtonUSA

Personalised recommendations