Parsing Combinatory Categorial Grammar via Planning in Answer Set Programming

  • Yuliya Lierler
  • Peter Schüller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7265)


Combinatory categorial grammar (CCG) is a grammar formalism used for natural language parsing. CCG assigns structured lexical categories to words and uses combinatory rules to combine these categories to parse a sentence. In this work we propose and implement a new approach to CCG parsing that relies on a prominent knowledge representation formalism, answer set programming (ASP) - a declarative programming paradigm. We formulate the task of CCG parsing as a planning problem and use an ASP computational tool to compute solutions that correspond to valid parses. Compared to other approaches, there is no need to implement a specific parsing algorithm using such a declarative method. Our approach aims at producing all semantically distinct parse trees for a given sentence. From this goal, normalization and efficiency issues arise, and we deal with them by combining and extending existing strategies.We have implemented a CCG parsing tool kit-AspCcgTk-that uses ASP as its main computational means. The C&C supertagger can be used as a preprocessor within AspCcgTk, which allows us to achieve wide-coverage natural language parsing.


Logic Program Noun Phrase Logic Programming Parse Tree Choice Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beavers, J.: Documentation: A CCG implementation for the LKB. Tech. rep., Stanford University, Center for the Study of Language and Information (2003)Google Scholar
  2. 2.
    Beavers, J., Sag, I.: Coordinate ellipsis and apparent non-constituent coordination. In: International Conference on Head-Driven Phrase Structure Grammar (HPSG 2004), pp. 48–69 (2004)Google Scholar
  3. 3.
    Beavers, J.: Type-inheritance combinatory categorial grammar. In: International Conference on Computational Linguistics, COLING 2004 (2004)Google Scholar
  4. 4.
    Bos, J.: Wide-coverage semantic analysis with boxer. In: Bos, J., Delmonte, R. (eds.) Semantics in Text Processing. STEP 2008 Conference Proceedings, pp. 277–286. Research in Computational Semantics, College Publications (2008)Google Scholar
  5. 5.
    Cimatti, A., Pistore, M., Traverso, P.: Automated planning. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation. Elsevier (2008)Google Scholar
  6. 6.
    Clark, S., Curran, J.R.: Log-linear models for wide-coverage CCG parsing. In: SIGDAT Conference on Empirical Methods in Natural Language Processing, EMNLP 2003 (2003)Google Scholar
  7. 7.
    Clark, S., Curran, J.R.: Parsing the WSJ using CCG and log-linear models. In: Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL 2004), Barcelona, Spain, pp. 104–111 (2004)Google Scholar
  8. 8.
    Clark, S., Curran, J.R.: Wide-coverage efficient statistical parsing with CCG and log-linear models. Computational Linguistics 33(4), 493–552 (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Djordjevic, B., Curran, J.R.: Efficient combinatory categorial grammar parsing. In: Proceedings of the 2006 Australasian Language Technology Workshop (ALTW), pp. 3–10 (2006)Google Scholar
  10. 10.
    Dowty, D.: Type raising, functional composition, and non-constituent conjunction. In: Oehrle, R.T., Bach, E., Wheeler, D. (eds.) Categorial Grammars and Natural Language Structures, vol. 32, pp. 153–197. Reidel, Dordrecht (1988)CrossRefGoogle Scholar
  11. 11.
    Drescher, C., Walsh, T.: Modelling grammar constraints with answer set programming. In: Gallagher, J.P., Gelfond, M. (eds.) Technical Communications of the 27th International Conference on Logic Programming, ICLP 2011, vol. 11, pp. 28–39 (2011)Google Scholar
  12. 12.
    Eisner, J.: Efficient normal-form parsing for combinatory categorial grammar. In: Proceedings of the 34th Annual Meeting on Association for Computational Linguistics (ACL 1996), pp. 79–86 (1996)Google Scholar
  13. 13.
    Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming approach to knowledge-state planning: Semantics and complexity. ACM Trans. Comput. Logic 5, 206–263 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gebser, M., König, A., Schaub, T., Thiele, S., Veber, P.: The BioASP library: ASP solutions for systems biology. In: 22nd IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2010), vol. 1, pp. 383–389 (2010)Google Scholar
  15. 15.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering an Incremental ASP Solver. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 190–205. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s guide to gringo, clasp, clingo, and iclingo (2010),
  17. 17.
    Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In: Proceedings of 20th International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 386–392. MIT Press (2007)Google Scholar
  18. 18.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proceedings of International Logic Programming Conference and Symposium (ICLP 1988), pp. 1070–1080. MIT Press (1988)Google Scholar
  19. 19.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 365–385 (1991)CrossRefzbMATHGoogle Scholar
  20. 20.
    Hockenmaier, J., Steedman, M.: CCGbank: A corpus of CCG derivations and dependency structures extracted from the Penn Treebank. Comput. Linguist. 33, 355–396 (2007)CrossRefzbMATHGoogle Scholar
  21. 21.
    Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: ParamILS: An automatic algorithm configuration framework. Journal of Artificial Intelligence Research 36, 267–306 (2009)zbMATHGoogle Scholar
  22. 22.
    Lierler, Y., Schüller, P.: Parsing combinatory categorial grammar with answer set programming: Preliminary report. In: Workshop on Logic programming, WLP (2011)Google Scholar
  23. 23.
    Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence 138, 39–54 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm. In: The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–398. Springer (1999)Google Scholar
  25. 25.
    McDermott, D., et al.: PDDL — the Planning Domain Definition Language. Tech. rep., Yale Center for Computational Vision and Control (1998), CVC TR-98-003/DCS TR-1165Google Scholar
  26. 26.
    Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Partee, B., Rooth, M.: Generalized conjunction and type ambiguity. In: Baeuerle, R., Schwarze, C., von Stechov, A. (eds.) Meaning, Use, and Interpretation, pp. 361–383 (1983)Google Scholar
  28. 28.
    Silverthorn, B., Lierler, Y., Schneider, M.: Surviving solver sensitivity: An asp practitioner’s guide (2012) (under review)Google Scholar
  29. 29.
    Steedman, M.: The syntactic process. MIT Press, London (2000)zbMATHGoogle Scholar
  30. 30.
    Vijay-Shanker, K., Weir, D.J.: Polynomial time parsing of combinatory categorial grammars. In: Proceedings of the 28th Annual Meeting on Association for Computational Linguistics, ACL 1990, pp. 1–8 (1990)Google Scholar
  31. 31.
    White, M., Baldridge, J.: Adapting chart realization to CCG. In: European Workshop on Natural Language Generation, EWNLG 2003 (2003)Google Scholar
  32. 32.
    Wittenburg, K.: Predictive combinators: a method for efficient processing of combinatory categorial grammars. In: 25th Annual Meeting of the Association for Computational Linguistics (ACL 1987), pp. 73–80 (1987)Google Scholar
  33. 33.
    Wittocx, J.: IDPDraw (2009), Katholieke Universiteit Leuven,

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yuliya Lierler
    • 1
  • Peter Schüller
    • 2
  1. 1.Department of Computer ScienceUniversity of KentuckyUSA
  2. 2.Institut für InformationssystemeTechnische Universität WienAustria

Personalised recommendations