Simulating Production Rules Using ACTHEX

  • Thomas Eiter
  • Cristina Feier
  • Michael Fink
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7265)

Abstract

Production rules are a premier formalism to describe actions which, given that certain conditions are met, change the state of a factual knowledge base and/or effect a change of the external environment in which they are situated, based on an operational semantics. acthex is a recent formalism extending hex programs, such that the specification of declarative knowledge in the form of logic programming rules can be interleaved with a type of condition-action rules which prescribe the execution of (sequences of) actions that can change the external environment. Under the provision of a specific semantics of conditions, the operational semantics of production rules can be simulated using the model-based semantics of acthex. Given that the latter features abstract access to external sources of computation, it can capture a range of concrete execution semantics and, moreover, facilitate access to heterogeneous information sources.

Keywords

acthex production rules 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rezk, M., Nutt, W.: Combining Production Systems and Ontologies. In: Rudolph, S., Gutierrez, C. (eds.) RR 2011. LNCS, vol. 6902, pp. 287–293. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Baral, C., Lobo, J.: Characterizing production systems using logic programming and situation calculus, http://www.cs.utep.edu/baral/papers/char-prod-systems.ps
  3. 3.
    Basol, S., Erdem, O., Fink, M., Ianni, G.: HEX programs with action atoms. In: Tech. Comm. of ICLP 2010. Leibniz International Proc. in Informatics. LIPIcs, vol. 7, pp. 24–33 (2010)Google Scholar
  4. 4.
    de Bruijn, J., Pearce, D., Polleres, A., Valverde, A.: Quantified Equilibrium Logic and Hybrid Rules. In: Marchiori, M., Pan, J.Z., Marie, C.d.S. (eds.) RR 2007. LNCS, vol. 4524, pp. 58–72. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    de Bruijn, J., Rezk, M.: A logic based approach to the static analysis of production systems. In: Polleres and Swift [23], pp. 254–268Google Scholar
  6. 6.
    Aguado, F., Cabalar, P., Pérez, G., Vidal, C.: Loop Formulas for Splitable Temporal Logic Programs. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 80–92. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Cabalar, P., Diéguez, M.: STeLP – A Tool for Temporal Answer Set Programming. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 370–375. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Damásio, C.V., Alferes, J.J., Leite, J.: Declarative Semantics for the Rule Interchange Format Production Rule Dialect. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B., et al. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 798–813. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    de Bruijn, J., Bonnard, P., Citeau, H., Dehors, S., Heymans, S., Pührer, J., Eiter, T.: Combinations of rules and ontologies: State-of-the-art survey of issues. Tech. Rep. Ontorule D3.1, Ontorule Project Consortium (2009), http://ontorule-project.eu/
  10. 10.
    Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the Semantic Web. Artif. Intell. 172(12/13), 1495–1539 (2008)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order reasoning and external evaluations in answer-set programming. In: Proc. IJCAI 2005, pp. 90–96. Professional Book Center (2005)Google Scholar
  12. 12.
    Eiter, T., Šimkus, M.: \(\mathbb{FDNC}\): Decidable non-monotonic disjunctive logic programs with function symbols. ACM Trans. Computational Logic (TOCL) 11(2), article 14Google Scholar
  13. 13.
    Faber, W., Pfeifer, G., Leone, N.: Semantics and complexity of recursive aggregates in answer set programming. Artif. Intell. 175(1), 278–298 (2011)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Feier, C., Aït-Kaci, H., Angele, J., de Bruijn, J., Citeau, H., Eiter, T., Ghali, A.E., Kerhet, V., Kiss, E., Korf, R., Krekeler, T., Krennwallner, T., Heymans, S., (FUB), A.M., Rezk, M., Xiao, G.: Complexity and optimization of combinations of rules and ontologies. Tech. Rep. Ontorule D3.3, Ontorule Project Consortium (2010), http://ontorule-project.eu/
  15. 15.
    Forgy, C.: Rete: A fast algorithm for the many patterns/many objects match problem. Artif. Intell. 19(1), 17–37 (1982)CrossRefGoogle Scholar
  16. 16.
    Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases. New Generation Computing 9, 365–385 (1991)CrossRefMATHGoogle Scholar
  17. 17.
    Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. AI 2(3-4), 193–210 (1998)Google Scholar
  18. 18.
    Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic Causal Theories. Artif. Intell. 153(1-2), 49–104 (2004)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kowalski, R.A., Sadri, F.: Integrating logic programming and production systems in abductive logic programming agents. In: Polleres and Swift [23], pp. 1–23Google Scholar
  20. 20.
    Marano, M., Obermeier, P., Polleres, A.: Processing RIF and OWL2RL within DLVHEX. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 244–250. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Motik, B., Rosati, R.: Reconciling Description Logics and Rules. JACM 57(5), 1–62 (2010)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Peppas, P.: Belief revision. In: van Harmelen, F., Lifschitz, V., Porter, B., et al. (eds.) Handbook of Logic in AI and Logic Programming, ch.8, pp. 317–360. Elsevier (2008)Google Scholar
  23. 23.
    Polleres, A., Swift, T. (eds.): RR 2009. LNCS, vol. 5837. Springer, Heidelberg (2009)MATHGoogle Scholar
  24. 24.
    Rezk, M., Kifer, M.: Formalizing Production Systems with Rule-Based Ontologies. In: Lukasiewicz, T., Sali, A. (eds.) FoIKS 2012. LNCS, vol. 7153, pp. 332–351. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    de Sainte Marie, C., Hallmark, G., Paschke, A. (eds): RIF Production Rule Dialect. Recommendation, W3C, June 22 (2010), http://www.w3.org/TR/rif-prd/
  26. 26.
    Rosati, R.: \(\mathcal{DL}\)+log: Tight integration of description logics and disjunctive Datalog. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proc. KR 2006, pp. 68–78. AAAI Press (2006)Google Scholar
  27. 27.
    Rosati, R., Franconi, E.: Generalized ontology-based production systems. In: Proc. KR 2012. AAAI Press (to appear, 2012)Google Scholar
  28. 28.
    Waterman, D., Hayes-Roth, F.: Pattern-directed inference systems. Academic Press (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thomas Eiter
    • 1
  • Cristina Feier
    • 1
  • Michael Fink
    • 1
  1. 1.Institute of Information SystemsVienna University of TechnologyViennaAustria

Personalised recommendations