Correct Reasoning pp 178-194 | Cite as
Approximation Fixpoint Theory and the Semantics of Logic and Answers Set Programs
Abstract
Approximation Fixpoint Theory was developed as a fixpoint theory of lattice operators that provides a uniform formalization of four main semantics of three major nonmonotonic reasoning formalisms. This paper clarifies how this fixpoint theory can define the stable and well-founded semantics of logic programs. It investigates the notion of strong equivalence underlying this semantics. It also shows the remarkable power of this theory for defining natural and elegant versions of these semantics for extensions of logic and answer set programs. In particular, we here consider extensions with general rule bodies, general interpretations (also non-Herbrand interpretations) and aggregates. We also investigate the relationship with the equilibrium semantics of nested answer set programs, on the formal and the informal level.
Keywords
Logic Program Logic Programming Stable Model Predicate Symbol Stable Model SemanticPreview
Unable to display preview. Download preview PDF.
References
- 1.Belnap, N.D.: A useful four-valued logic. In: Dunn, J.M., Epstein, G. (eds.) Modern Uses of Multiple-Valued Logic, pp. 8–37. Reidel, Dordrecht (1977); Invited papers from the Fifth International Symposium on Multiple-Valued Logic, held at Indiana University, Bloomington, Indiana, May 13-16 (1975)Google Scholar
- 2.Clark, K.L.: Negation as failure. In: Logic and Data Bases, pp. 293–322. Plenum Press (1978)Google Scholar
- 3.Denecker, M., Marek, V.W., Truszczyński, M.: Approximating operators, stable operators, well-founded fixpoints and applications in non-monotonic reasoning. In: Logic-based Artificial Intelligence. The Kluwer International Series in Engineering and Computer Science, pp. 127–144. Kluwer Academic Publishers, Boston (2000)CrossRefGoogle Scholar
- 4.Denecker, M., Marek, V.W., Truszczynski, M.: Uniform semantic treatment of default and autoepistemic logics. Artif. Intell. 143(1), 79–122 (2003)MathSciNetCrossRefMATHGoogle Scholar
- 5.Eiter, T., Fink, M., Tompits, H., Traxler, P., Woltran, S.: Replacements in non-ground answer-set programming. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) KR, pp. 340–351. AAAI Press (2006)Google Scholar
- 6.Feferman, S.: Toward useful type-free theories. Journal of Symbolic Logic 49(1), 75–111 (1984)MathSciNetCrossRefMATHGoogle Scholar
- 7.Fitting, M.: A Kripke-Kleene semantics for logic programs. Journal of Logic Programming 2(4), 295–312 (1985)MathSciNetCrossRefMATHGoogle Scholar
- 8.Fitting, M.: Fixpoint semantics for logic programming a survey. Theoretical Computer Science 278(1-2), 25–51 (2002)MathSciNetCrossRefMATHGoogle Scholar
- 9.Gelfond, M.: Representing Knowledge in A-Prolog. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2408, pp. 413–451. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 10.Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R.A., Bowen, K.A. (eds.) ICLP/SLP, pp. 1070–1080. MIT Press (1988)Google Scholar
- 11.Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of disjunctive stable models. J. Artif. Intell. Res (JAIR) 35, 813–857 (2009)MathSciNetMATHGoogle Scholar
- 12.Kleene, S.C.: Introduction to Metamathematics. Van Nostrand (1952)Google Scholar
- 13.Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans. Comput. Log. 2(4), 526–541 (2001)MathSciNetCrossRefGoogle Scholar
- 14.Lin, F., Chen, Y.: Discovering classes of strongly equivalent logic programs. J. Artif. Intell. Res (JAIR) 28, 431–451 (2007)MathSciNetMATHGoogle Scholar
- 15.Marek, V.W., Truszczyński, M.: Logic programs with abstract constraint atoms. In: Proceedings of the 19th National Conference on Artificial Intelligence (AAAI 2004), pp. 86–91. AAAI Press (2004)Google Scholar
- 16.Pearce, D.: A New Logical Characterisation of Stable Models and Answer Sets. In: Dix, J., Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS, vol. 1216, pp. 57–70. Springer, Heidelberg (1997)CrossRefGoogle Scholar
- 17.Pearce, D.: Equilibrium logic. Ann. Math. Artif. Intell. 47(1-2), 3–41 (2006)MathSciNetCrossRefMATHGoogle Scholar
- 18.Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and stable semantics of logic programs with aggregates. Theory and Practice of Logic Programming (TPLP) 7(3), 301–353 (2007)MathSciNetCrossRefMATHGoogle Scholar
- 19.Przymusinski, T.C.: The well-founded semantics coincides with the three-valued stable semantics. Fundamenta Informaticae 13(4), 445–463 (1990)MathSciNetMATHGoogle Scholar
- 20.Van Gelder, A.: The alternating fixpoint of logic programs with negation. Journal of Computer and System Sciences 47(1), 185–221 (1993)MathSciNetCrossRefMATHGoogle Scholar
- 21.Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. Journal of the ACM 38(3), 620–650 (1991)MathSciNetCrossRefMATHGoogle Scholar
- 22.Vennekens, J., Mariën, M., Wittocx, J., Denecker, M.: Predicate introduction for logics with a fixpoint semantics. Part I: Logic programming. Fundamenta Informaticae 79(1-2), 187–208 (2007)MathSciNetMATHGoogle Scholar