Strong Equivalence of RASP Programs

  • Stefania Costantini
  • Andrea Formisano
  • David Pearce
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7265)


RASP is a recent extension of Answer Set Programming (ASP) that permits declarative specification and reasoning on consumption and production of resources. In this paper, we extend the concept of strong equivalence (which, as widely recognized, provides an important conceptual and practical tool for program simplification, transformation and optimization) from ASP to RASP programs and discuss its applicability, usefulness and implications in this wider context.


Logic Programming Rational Addition Unique Equilibrium Intuitionistic Logic Predicate Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description Logic Handbook. Cambridge University Press (2003)Google Scholar
  2. 2.
    Chintabathina, S., Gelfond, M., Watson, R.: Defeasible laws, parallel actions, and reasoning about resources. In: Amir, E., Lifschitz, V., Miller, R. (eds.) Logical Formalizations of Commonsense Reasoning: Proceedings of CommonSense 2007. AAAI Press, Menlo Park (2007); Technical report SS-07-05Google Scholar
  3. 3.
    Costantini, S., Formisano, A.: Modeling preferences and conditional preferences on resource consumption and production in ASP. Journal of Algorithms in Cognition, Informatics and Logic 64(1), 3–15 (2009)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Costantini, S., Formisano, A.: Answer set programming with resources. Journal of Logic and Computation 20(2), 533–571 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Costantini, S., Formisano, A., Petturiti, D.: Extending and implementing RASP. Fundamenta Informaticae 105(1-2), 1–33 (2010)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Costantini, S., Formisano, A., Petturiti, D.: Strong Equivalence for RASP Programs: Long Version. Tech. Rep. 02-2012 Dip. di Matematica e Informatica, Univ. di Perugia,
  7. 7.
    Gelfond, M.: Answer sets. In: Handbook of Knowledge Representation, ch.7. Elsevier (2007)Google Scholar
  8. 8.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proc. of the 5th Intl. Conference and Symposium on Logic Programming, pp. 1070–1080. The MIT Press (1988)Google Scholar
  9. 9.
    Gelfond, M., Lifschitz, V.: Action languages. Electronic Transactions on AI 3(16), 193–210 (1998)Google Scholar
  10. 10.
    Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transactions on Computational Logic 2, 526–541 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Niemelä, I., Simons, P., Soininen, T.: Stable Model Semantics of Weight Constraint Rules. In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730, pp. 317–331. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Pearce, D.: A New Logical Characterization of Stable Models and Answer Sets. In: Dix, J., Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS (LNAI), vol. 1216, pp. 55–70. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  14. 14.
    Pearce, D., Valverde, A.: Synonymous theories in answer set programming and equilibrium logic. In: Proc. of 16th Europ. Conf. on Art. Intell., ECAI 2004, pp. 388–390 (2004)Google Scholar
  15. 15.
    Pearce, D., Valverde, A.: Quantified equilibrium logic and the first order logic of here-and-there. Technical report, Univ. Rey Juan Carlos (2006),
  16. 16.
    Soininen, T., Niemelä, I.: Developing a Declarative Rule Language for Applications in Product Configuration. In: Gupta, G. (ed.) PADL 1999. LNCS, vol. 1551, pp. 305–319. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Soininen, T., Niemelä, I., Tiihonen, J., Sulonen, R.: Representing configuration knowledge with weight constraint rules. In: Proceedings of the AAAI Spring 2001 Symposium on Answer Set Programming (ASP 2001): Towards Efficient and Scalable Knowledge. AAAI Press, Menlo Park (2001); Technical report SS-01-01Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stefania Costantini
    • 1
  • Andrea Formisano
    • 2
  • David Pearce
    • 3
  1. 1.Università di L’AquilaItaly
  2. 2.Università di PerugiaItaly
  3. 3.Universidad Politècnica de MadridSpain

Personalised recommendations