Advertisement

Acceptance Conditions in Automated Negotiation

  • Tim BaarslagEmail author
  • Koen Hindriks
  • Catholijn Jonker
Part of the Studies in Computational Intelligence book series (SCI, volume 435)

Abstract

In every negotiation with a deadline, one of the negotiating parties has to accept an offer to avoid a break off. A break off is usually an undesirable outcome for both parties, therefore it is important that a negotiator employs a proficient mechanism to decide under which conditions to accept. When designing such conditions one is faced with the acceptance dilemma: accepting the current offermay be suboptimal, as better offers may still be presented. On the other hand, accepting too late may prevent an agreement from being reached, resulting in a break off with no gain for either party. Motivated by the challenges of bilateral negotiations between automated agents and by the results and insights of the automated negotiating agents competition (ANAC), we classify and compare state-of-the-art generic acceptance conditions.We focus on decoupled acceptance conditions, i.e. conditions that do not depend on the bidding strategy that is used.We performed extensive experiments to compare the performance of acceptance conditions in combination with a broad range of bidding strategies and negotiation domains. Furthermore we propose new acceptance conditions and we demonstrate that they outperform the other conditions that we study. In particular, it is shown that they outperform the standard acceptance condition of comparing the current offer with the offer the agent is ready to send out. We also provide insight in to why some conditions work better than others and investigate correlations between the properties of the negotiation environment and the efficacy of acceptance conditions.

Keywords

Multiagent System Acceptance Condition Average Utility Bidding Strategy Negotiation Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    An, B., Lesser, V.: Yushu: A Heuristic-Based Agent for Automated Negotiating Competition. In: Ito, T., Zhang, M., Robu, V., Fatima, S., Matsuo, T. (eds.) New Trends in Agent-Based Complex Automated Negotiations. SCI, vol. 383, pp. 145–149. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Aumann, R., Hart, S. (eds.): Handbook of Game Theory with Economic Applications, vol. 1. Elsevier (March 1992)Google Scholar
  3. 3.
    Baarslag, T., Hindriks, K., Jonker, C., Kraus, S., Lin, R.: The First Automated Negotiating Agents Competition (ANAC 2010). In: Ito, T., Zhang, M., Robu, V., Fatima, S., Matsuo, T. (eds.) New Trends in Agent-Based Complex Automated Negotiations. SCI, vol. 383, pp. 113–135. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Williams, C.R., Robu, V., Gerding, E.H., Jennings, N.R.: IAMhaggler: A Negotiation Agent for Complex Environments. In: Ito, T., Zhang, M., Robu, V., Fatima, S., Matsuo, T. (eds.) New Trends in Agent-Based Complex Automated Negotiations. SCI, vol. 383, pp. 151–158. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Faratin, P., Sierra, C., Jennings, N.R.: Negotiation decision functions for autonomous agents. Int. Journal of Robotics and Autonomous Systems 24(3-4), 159–182 (1998)CrossRefGoogle Scholar
  6. 6.
    Faratin, P., Sierra, C., Jennings, N.R.: Using similarity criteria to make negotiation trade-offs. Journal of Artificial Intelligence 142(2), 205–237 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fatima, S.S., Wooldridge, M., Jennings, N.R.: Multi-issue negotiation under time constraints. In: AAMAS 2002: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 143–150. ACM, New York (2002)CrossRefGoogle Scholar
  8. 8.
    Fatima, S.S., Wooldridge, M., Jennings, N.R.: Optimal Negotiation Strategies for Agents with Incomplete Information. In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333, pp. 377–392. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Hindriks, K.V., Tykhonov, D.: Towards a Quality Assessment Method for Learning Preference Profiles in Negotiation. In: Ketter, W., La Poutré, H., Sadeh, N., Shehory, O., Walsh, W. (eds.) AMEC 2008. LNBIP, vol. 44, pp. 46–59. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Hindriks, K.V., Tykhonov, D.: Opponent modelling in automated multi-issue negotiation using bayesian learning (2008)Google Scholar
  11. 11.
    Ito, T., Hattori, H., Klein, M.: Multi-issue negotiation protocol for agents: Exploring nonlinear utility spaces (2007)Google Scholar
  12. 12.
    Jonker, C., Robu, V., Treur, J.: An agent architecture for multi-attribute negotiation using incomplete preference information. Autonomous Agents and Multi-Agent Systems 15, 221–252 (2007), doi:10.1007/s10458-006-9009-yCrossRefGoogle Scholar
  13. 13.
    Kersten, G., Noronha, S.: Rational agents, contract curves, and inefficient compromises report. Working papers, International Institute for Applied Systems Analysis (1997)Google Scholar
  14. 14.
    Kersten, G.E., Zhang, G.: Mining inspire data for the determinants of successful internet negotiations. InterNeg Research Papers INR 04/01 Central European Journal of Operational Research (2003)Google Scholar
  15. 15.
    Kraus, S.: Strategic Negotiation in Multiagent Environments. MIT Press (October 2001)Google Scholar
  16. 16.
    Lin, R., Kraus, S., Baarslag, T., Tykhonov, D., Hindriks, K., Jonker, C.M.: Genius: An integrated environment for supporting the design of generic automated negotiators. Computational Intelligence (2012)Google Scholar
  17. 17.
    Lin, R., Kraus, S., Tykhonov, D., Hindriks, K., Jonker, C.M.: Supporting the Design of General Automated Negotiators. In: Ito, T., Zhang, M., Robu, V., Fatima, S., Matsuo, T., Yamaki, H. (eds.) Innovations in Agent-Based Complex Automated Negotiations. SCI, vol. 319, pp. 69–87. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Lin, R., Kraus, S., Wilkenfeld, J., Barry, J.: Negotiating with bounded rational agents in environments with incomplete information using an automated agent. Artificial Intelligence 172(6-7), 823–851 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Lin, R., Oshrat, Y., Kraus, S.: Investigating the benefits of automated negotiations in enhancing people’s negotiation skills. In: AAMAS 2009: Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems, pp. 345–352 (2009)Google Scholar
  20. 20.
    Osborne, M.J., Rubinstein, A.: Bargaining and Markets (Economic Theory, Econometrics, and Mathematical Economics). Academic Press (April 1990)Google Scholar
  21. 21.
    Raiffa, H.: The Art and Science of Negotiation. Harvard University Press (1982)Google Scholar
  22. 22.
    Ros, R., Sierra, C.: A negotiation meta strategy combining trade-off and concession moves. Autonomous Agents and Multi-Agent Systems, 163–181 (2006)Google Scholar
  23. 23.
    Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica 50(1), 97–109 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Dan Şerban, L., Silaghi, G.C., Litan, C.M.: AgentFSEGA: Time Constrained Reasoning Model for Bilateral Multi-issue Negotiations. In: Ito, T., Zhang, M., Robu, V., Fatima, S., Matsuo, T. (eds.) New Trends in Agent-Based Complex Automated Negotiations. SCI, vol. 383, pp. 159–165. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Kawaguchi, S., Fujita, K., Ito, T.: AgentK: Compromising Strategy Based on Estimated Maximum Utility for Automated Negotiating Agents. In: Ito, T., Zhang, M., Robu, V., Fatima, S., Matsuo, T. (eds.) New Trends in Agent-Based Complex Automated Negotiations. SCI, vol. 383, pp. 137–144. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  26. 26.
    Sierra, C., Faratin, P., Jennings, N.: A Service-Oriented Negotiation Model Between Autonomous Agents. In: Boman, M., Van de Velde, W. (eds.) MAAMAW 1997. LNCS, vol. 1237, pp. 17–35. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  27. 27.
    van Galen Last, N.: Agent Smith: Opponent Model Estimation in Bilateral Multi-issue Negotiation. In: Ito, T., Zhang, M., Robu, V., Fatima, S., Matsuo, T. (eds.) New Trends in Agent-Based Complex Automated Negotiations. SCI, vol. 383, pp. 167–174. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  28. 28.
    Wellman, M.P., Wurman, P.R., O’Malley, K., Bangera, R., de Lin, S., Reeves, D., Walsh, W.E.: Designing the market game for a trading agent competition. IEEE Internet Computing 5(2), 43–51 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Interactive Intelligence GroupDelft University of TechnologyDelftThe Netherlands

Personalised recommendations