Hybrid Metaheuristics pp 389-414

Part of the Studies in Computational Intelligence book series (SCI, volume 434) | Cite as

A Multi-paradigm Tool for Large Neighborhood Search

  • Raffaele Cipriano
  • Luca Di Gaspero
  • Agostino Dovier

Abstract

We present a general tool for encoding and solving optimization problems. Problems can be modeled using several paradigms and/or languages such as: Prolog, MiniZinc, and GECODE. Other paradigms can be included. Solution search is performed by a hybrid solver that exploits the potentiality of the Constraint Programming environment GECODE and of the Local Search framework EasyLocal++ for Large Neighborhood Search . The user can modify a set of parameters for guiding the hybrid search. In order to test the tool, we show the development phase of hybrid solvers on some benchmark problems. Moreover, we compare these solvers with other approaches, namely a pure Local Search, a pure constraint programming search, and with a state-of-the-art solver for constraint-based Local Search.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarts, E., Lenstra, J.K.: Local Search in Combinatorial Optimization. John Wiley & Sons, Chichester (1997)MATHGoogle Scholar
  2. 2.
    Krzysztof, R.: Apt. In: Principles of Constraint Programming. Cambridge University Press, Cambridge (2003)Google Scholar
  3. 3.
    Cipriano, R., Di Gaspero, L., Dovier, A.: A Hybrid Solver for Large Neighborhood Search: Mixing Gecode and EasyLocal++. In: Blesa, M.J., Blum, C., Di Gaspero, L., Roli, A., Sampels, M., Schaerf, A. (eds.) HM 2009. LNCS, vol. 5818, pp. 141–155. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Cipriano, R., Dovier, A., Mauro, J.: Compiling and Executing Declarative Modeling Languages to Gecode. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 744–748. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Di Gaspero, L., Schaerf, A.: Writing local search algorithms using EasyLocal++. In: Voß, S., Woodruff, D.L. (eds.) Optimization Software Class Libraries, OR/CS, Kluwer Academic Publisher, Boston (2002)Google Scholar
  6. 6.
    Di Gaspero, L., Schaerf, A.: EasyLocal++: An object-oriented framework for flexible design of local search algorithms. Software — Practice & Experience 33(8), 733–765 (2003)CrossRefGoogle Scholar
  7. 7.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of reusable object-oriented software. Addison-Wesley Professional (1995)Google Scholar
  8. 8.
    Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. Journal of Logic Programming 19/20, 503–581 (1994)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Marriot, K., Stuckey, P.J., De Koninck, L., Samulowitz, H.: An introduction to minizinc, http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.3/minizinc-tute.pdf
  10. 10.
    McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A.J., Di Gaspero, L., Qu, R., Burke, E.K.: Setting the research agenda in automated timetabling: The second international timetabling competition. INFORMS Journal on Computing 22(1), 120–130 (2010)MATHCrossRefGoogle Scholar
  11. 11.
    Michel, L., Van Hentenryck, P.: The comet programming language and system. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 881–881. Springer, Heidelberg (2005) doi: 10.1007/11564751/119Google Scholar
  12. 12.
    Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: Towards a Standard CP Modelling Language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Swedish Institute of Computer Science. Sicstus prolog, http://www.sics.se/sicstus.html
  14. 14.
    Shaw, P.: Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 417–431. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  15. 15.
    Gecode Team. Gecode: Generic constraint development environment, http://www.gecode.org
  16. 16.
    Gecode Team. Gecode reference documentation, http://www.gecode.org/doc-latest/reference/index.html
  17. 17.
    Gecode Team. Modeling and programming with gecode, http://www.gecode.org/doc-latest/MPG.pdf
  18. 18.
    Universität Heidelberg, Institut für Informatik. TSPLIB, http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
  19. 19.
    Wolf, S., Merz, P.: Evolutionary Local Search for the Minimum Energy Broadcast Problem. In: van Hemert, J., Cotta, C. (eds.) EvoCOP 2008. LNCS, vol. 4972, pp. 61–72. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)CrossRefGoogle Scholar
  21. 21.
    Pieter Wuille and Tom Schrijvers. Monadic Constraint Programming with Gecode. In: Proc. of ModRef 2009, Eighth International Workshop on Constraint Modelling and Reformulation, Lisbon, Portugal (September 2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Raffaele Cipriano
    • 1
  • Luca Di Gaspero
    • 2
  • Agostino Dovier
    • 1
  1. 1.Dipartimento di Matematica e InformaticaUniversità degli Studi di UdineUdineItaly
  2. 2.Dipartimento di Ingegneria Elettrica, Gestionale eMeccanicaUniversità degli Studi di UdineUdineItaly

Personalised recommendations