On Probabilistic Correlation Coefficients for Fuzzy Numbers

  • Robert Fullér
  • István Á. Harmati
  • Péter Várlaki
Part of the Topics in Intelligent Engineering and Informatics book series (TIEI, volume 2)

Abstract

In this paper we introduce alternative definitions for the measure of interactivity between fuzzy numbers by defining non-uniform probability distributions on the γ-level sets (γ-cuts) of their joint possibility distribution. These probability distributions are determined by the shape function of the joint possibility distribution if we consider this as a probability density function (with an appropriate constant multiplier), so we use only the information contained in the joint possibility distribution. We also show some detailed examples for the calculation when the joint possibility distributions are defined by well-known t-norms, such as Mamdani, Lukasiewicz and Larsen t-norms.

Keywords

Probability Density Function Fuzzy Number Joint Probability Density Function Fuzzy Measure Membership Grade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press (2003)Google Scholar
  2. 2.
    Dubois, D., Prade, H.: The mean value of a fuzzy number. Fuzzy Set Syst. 24, 279–300 (1987), doi:10.1016/0165-0114(87)90028-5MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Carlsson, C., Fullér, R., Majlender, P.: On possibilistic correlation. Fuzzy Set Syst. 155, 425–445 (2005), doi:10.1016/j.fss.2005.04.014MATHCrossRefGoogle Scholar
  4. 4.
    Fullér, R., Majlender, P.: On interactive fuzzy numbers. Fuzzy Set Syst. 143, 355–369 (2004), doi:10.1016/S0165-0114(03)00180-5CrossRefGoogle Scholar
  5. 5.
    Dubois, D.: Possibility theory and statistical reasoning. Comput. Stat. & Data Analysis 5, 47–69 (2006), doi:10.1016/j.csda.2006.04.015CrossRefGoogle Scholar
  6. 6.
    Fullér, R., Mezei, J., Várlaki, P.: An improved index of interactivity for fuzzy numbers. Fuzzy Set Syst. 165, 56–66 (2011), doi:10.1016/j.fss.2010.06.001CrossRefGoogle Scholar
  7. 7.
    Fullér, R., Mezei, J., Várlaki, P.: Some Examples of Computing the Possibilistic Correlation Coefficient from Joint Possibility Distributions. In: Rudas, I.J., Fodor, J., Kacprzyk, J. (eds.) Computational Intelligence in Engineering. SCI, vol. 313, pp. 153–169. Springer, Heidelberg (2010) ISBN 978-3-642-15219-1, doi:10.1007/978-3-642-15220-7CrossRefGoogle Scholar
  8. 8.
    Liu, S.T., Kao, C.: Fuzzy measures for correlation coefficient of fuzzy numbers. Fuzzy Set Syst. 128, 267–275 (2002)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Hong, D.H.: Fuzzy measures for a correlation coefficient of fuzzy numbers under Tw (the weakest t-norm)-based fuzzy arithmetic operations. Inform Sciences 176, 150–160 (2006)MATHCrossRefGoogle Scholar
  10. 10.
    Schweizer, B., Sklar, A.: Associative functions and abstract semigroups. Publ. Math. Debrecen. 10, 69–81 (1963)MathSciNetGoogle Scholar
  11. 11.
    Mamdani, E.H.: Advances in the linguistic synthesis of fuzzy controllers. Int. J. Man Mach. Stud. 8(6), 669–678 (1976), doi:10.1016/S0020-7373(76)80028-4MATHCrossRefGoogle Scholar
  12. 12.
    Lukasiewicz, J.: O logice trójwartosciowej. Ruch filozoficzny 5, 170–171 (1920) (in Polish); English translation: On three-valued logic. In: Borkowski, L.(eds.): Selected works by Jan Lukasiewicz. Amsterdam, North-Holland, pp. 87-88 (1970)Google Scholar
  13. 13.
    Larsen, P.M.: Industrial applications of fuzzy logic control. International Journal of Man-Machine Studies 12, 3–10 (1980), doi:10.1016/S0020-7373(80)80050-2CrossRefGoogle Scholar
  14. 14.
    Harmati, I.Á.: A note on f-weighted possibilistic correlation for identical marginal possibility distributions. Fuzzy Set Syst. 165, 106–110 (2011), doi:10.1016/j.fss.2010.11.005MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Fullér, R., Harmati, I.Á., Várlaki, P.: Probabilistic Correlation Coefficients for Possibility Distributions. In: Fifteenth IEEE International Conference on Intelligent Engineering Systems 2011 (INES 2011), Poprad, Slovakia, June 23-25, pp. 153–158 (2011) ISBN 978-1-4244-8954-1, doi:10.1109/INES.2011.5954737Google Scholar
  16. 16.
    Fullér, R., Harmati, I.Á., Mezei, J., Várlaki, P.: On Possibilistic Correlation Coefficient and Ratio for Fuzzy Numbers. In: Recent Researches in Artificial Intelligence, Knowledge Engineering & Data Bases, 10th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases, February 20-22, pp. 263–268. WSEAS Press, Cambridge (2011) ISBN: 978-960-474-237-8Google Scholar
  17. 17.
    Fullér, R., Harmati, I.Á., Várlaki, P.: On Possibilistic Correlation Coefficient and Ratio for Triangular Fuzzy Numbers with Multiplicative Joint Distribution. In: Proceedings of the Eleventh IEEE International Symposium on Computational Intelligence and Informatics (CINTI 2010), Budapest, Hungary, November 18-20, pp. 103–108 (2010) ISBN 978-1-4244-9278-7, doi:10.1109/CINTI.2010.5672266Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Robert Fullér
    • 1
  • István Á. Harmati
    • 2
  • Péter Várlaki
    • 3
    • 4
  1. 1.Institute of Intelligent Engineering Systems, John von Neumann Faculty of InformaticsÓbuda UniversityBudapestHungary
  2. 2.Department of Mathematics and Computational ScienceSzéchenyi István UniversityGyőrHungary
  3. 3.Széchenyi István UniversityGyőrHungary
  4. 4.Budapest University of Technology and EconomicsBudapestHungary

Personalised recommendations