Energy and Security Awareness in Evolutionary-Driven Grid Scheduling

  • Joanna Kołodziej
  • Samee U. Khan
  • Lizhe Wang
  • Dan Chen
  • Albert Y. Zomaya
Part of the Studies in Computational Intelligence book series (SCI, volume 432)

Abstract

Ensuring the energy efficiency, thermal safety, and security-awareness in today’s large-scale distributed computing systems is one of the key research issues that leads to the improvement of the system scalability and requires researchers to harness an understanding of the interactions between the system external users and the internal service and resource providers. Modeling these interactions can be computationally challenging especially in the infrastructures with different local access and management policies such as computational grids and clouds. In this chapter, we approach the independent batch scheduling in Computational Grid (CG) as a three-objective minimization problem with Makespan, Flowtime and energy consumption in risky and security scenarios. Each physical resource in the system is equipped with Dynamic Voltage Scaling (DVS) module for optimizing the cumulative power energy utilized by the system. The effectiveness of six genetic-based single- and multi-population grid schedulers has been justified in comprehensive empirical analysis.

Keywords

Schedule Problem Completion Time Resource Owner Grid User Dynamic Voltage Scaling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abawajy, J.: An efficient adaptive scheduling policy for high performance computing. Future Generation Computer Systems 25(3), 364–370 (2009)CrossRefGoogle Scholar
  2. 2.
    Abraham, A., Buyya, R., Nath, B.: Nature’s heuristics for scheduling jobs on computational grids. In: Proc. of the 8th IEEE International Conference on Advanced Computing and Communications, India, pp. 45–52 (2000)Google Scholar
  3. 3.
    Aguirre, H., Tanaka, K.: Working principles, behavior, and performance of moeas on mnk-landscapes. European Journal of Operational Research 181, 1670–1690 (2007)MATHCrossRefGoogle Scholar
  4. 4.
    Ali, S., Siegel, H., Maheswaran, M., Ali, S., Hensgen, D.: Task execution time modeling for heterogeneous computing systems. In: Proc. of the Workshop on Heterogeneous Computing, pp. 185–199 (2000)Google Scholar
  5. 5.
    Back, T., Fogel, D.B., Michalewicz, Z. (eds.): Evolutionary Computation, Part 1 and 2. IOP Publishing Ltd (2000)Google Scholar
  6. 6.
    Baker, R.J.: CMOS: circuit design, layout, and simulation, 2nd edn. Wiley (2008)Google Scholar
  7. 7.
    Bartschi Wall, M.:: A Genetic Algorithm for Resource-Constrained Scheduling. PhD Thesis, Massachusetts Institute of Technology, MA (1996)Google Scholar
  8. 8.
    Beloglazov, A., Buyya, R., Lee, Y., Zomaya, A.Y.: A taxonomy and survey of energy-efficient data centers and cloud computing systems. Advances in Computers 82, 47–111 (2011)CrossRefGoogle Scholar
  9. 9.
    Brucker, P.: Scheduling Algorithms. Springer (2007)Google Scholar
  10. 10.
    Buyya, R., Murshed, M.: Gridsim: A toolkit for the modeling and simulation of distributed resource management and scheduling for grid computing. Concurrency and Computation: Practice and Experience 14(13-15), 1175–1220 (2002)MATHCrossRefGoogle Scholar
  11. 11.
    Carretero, J., Xhafa, F.: Using Genetic Algorithms for Scheduling Jobs in Large Scale Grid Applications. Journal of Technological and Economic Development –A Research Journal of Vilnius Gediminas Technical University 12(1), 11–17 (2006)Google Scholar
  12. 12.
    Davis, L. (ed.): Handbook of Genetic Algoriithms. Van Nostrand Reinhold, New York (1991)Google Scholar
  13. 13.
    Fibich, P., Matyska, L., Rudová, H.: Model of grid scheduling problem. In: Proc. of the AAAI 2005 Workshop on Exploring Planning and Scheduling for Web Services, Grid and Autonomic Computing (2005)Google Scholar
  14. 14.
    Garg, S., Buyya, R., Segel, H.: Scheduling parallel aplications on utility grids: Time and cost trade-off management. In: Mans, B. (ed.) Proc. of the 32nd ACSC, Wellington, Australia. CRPIT, vol. 91 (2009)Google Scholar
  15. 15.
    Goldberg, D.E., Lingle Jr., R.: Alleles, loci and the travelling salesman problem. In: Proc. of the ICA 1985, Pittsburgh (1985)Google Scholar
  16. 16.
    Gosh, P., Das, S.: Mobility-aware cost-efficient job scheduling for single-class grid jobs in a generic mobile grid architecture. Future Generation Computer Systems 26(8), 1356–1367 (2010)CrossRefGoogle Scholar
  17. 17.
    Graham, R., Lawler, E., Lenstra, J., Rinnooy Kan, A.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics 5, 287–326 (1979)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Grueninger, T.: Multimodal optimization using genetic algorithms. Technical report, Department of Mechanical Engineering. MIT, Cambridge (1997)Google Scholar
  19. 19.
    Guzek, K., Pecero, J.E., Dorrosoro, B., Bouvry, P., Khan, S.U.: A cellular genetic algorithm for scheduling applications and energy-aware communication optimization. In: Proc. of the ACM/IEEE/IFIP Int. Conf. on High Performance Computing and Simulation (HPCS), Caen, France, pp. 241–248 (2010)Google Scholar
  20. 20.
    Humphrey, M., Thompson, M.: Security implications of typical grid computing usage scenarios. In: Proc. of the Conf. on High Performance Distributed Computing (2001)Google Scholar
  21. 21.
    Hwang, S., Kesselman, C.: A flexible framework for fault tolerance in the grid. J. of Grid Computing 1(3), 251–272 (2003)MATHCrossRefGoogle Scholar
  22. 22.
    Kessaci, Y., Mezmaz, M., Melab, N., Talbi, E.-G., Tuyttens, D.: Parallel Evolutionary Algorithms for Energy Aware Scheduling. In: Bouvry, P., González-Vélez, H., Kołodziej, J. (eds.) Intelligent Decision Systems in Large-Scale Distributed Environments. SCI, vol. 362, pp. 75–100. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Khan, S.: A goal programming approach for the joint optimization of energy consumption and response time in computational grids. In: Proc. of the 28th IEEE International Performance Computing and Communications Conference (IPCCC), Phoenix, AZ, USA, pp. 410–417 (2009a)Google Scholar
  24. 24.
    Khan, S.: A self-adaptive weighted sum technique for the joint optimization of performance and power consumption in data centers. In: Proc. of the 22nd International Conference on Parallel and Distributed Computing and Communication Systems (PDCCS), USA, pp. 13–18 (2009b)Google Scholar
  25. 25.
    Khan, S.U., Ahmad, I.: A cooperative game theoretical technique for joint optimization of energy consumption and response time in computational grids. IEEE Tran. on Parallel and Distributed Systems 20(3), 346–360 (2009)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kliazovich, D., Bouvry, P., Khan, S.U.: Dens: Data center energy-efficient network-aware scheduling. In: Proc. of ACM/IEEE International Conference on Green Computing and Communications (GreenCom), Hangzhou, China, pp. 69–75 (December 2010)Google Scholar
  27. 27.
    Klusaček, D., Rudová, H.: Efficient grid scheduling through the incremental schedule-based approach. Computational Intelligence 27(1), 4–22 (2011)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Kołodziej, J.: Evolutionary Hierarchical Multi-Criteria Metaheuristics for Scheduling in Large-Scale Grid Systems. SCI, vol. 419. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  29. 29.
    Kołodziej, J., Xhafa, F.: Enhancing the genetic-based scheduling in computational grids by a structured hierarchical population. Future Generation Computer Systems 27, 1035–1046 (2011)CrossRefGoogle Scholar
  30. 30.
    Kołodziej, J., Xhafa, F.: Integration of task abortion and security requirements in ga-based meta-heuristics for independent batch grid scheduling. Computers and Mathematics with Applications 63, 350–364 (2011)CrossRefGoogle Scholar
  31. 31.
    Kołodziej, J., Xhafa, F.: Meeting security and user behaviour requirements in grid scheduling. Simulation Modelling Practice and Theory 19(1), 213–226 (2011)CrossRefGoogle Scholar
  32. 32.
    Kołodziej, J., Xhafa, F.: Modern approaches to modelling user requirements on resource and task allocation in hierarchical computational grids. Int. J. on Appled Mathematics and Computer Science 21(2), 243–257 (2011)CrossRefGoogle Scholar
  33. 33.
    Kwok, Y.-K., Hwang, K., Song, S.: Selfish grids: Game-theoretic modeling and nas/psa benchmark evaluation. IEEE Tran. on Parallel and Distributing Systems 18(5), 1–16 (2007)CrossRefGoogle Scholar
  34. 34.
    Lapin, L.: Probability and Statistics for Modern Engineering, 2nd edn. (1998)Google Scholar
  35. 35.
    Lee, Y.C., Zomaya, A.Y.: Minimizing energy consumption for precedence-constrained applications using dynamic voltage scaling. In: Proc. of the 9th IEEE/ACM International Symposium on Cluster Computing and the Grid CCGrid), Shanghai, China, pp. 92–99 (2009)Google Scholar
  36. 36.
    Mann, P.S.: Introductory Statistics, 7th edn. Wiley (2010)Google Scholar
  37. 37.
    Mejia-Alvarez, P., Levner, E., Mossé, D.: Adaptive scheduling server for power-aware real-time tasks. ACM Trans. Embed. Comput. Syst. 3(2), 284–306 (2004)CrossRefGoogle Scholar
  38. 38.
    Mezmaz, M., Melab, N., Kessaci, Y., Lee, Y., Talbi, E.-G., Zomaya, A., Tuyttens, D.: A parallel bi-objective hybrid metaheuristic for energy-aware scheduling for cloud computing systems. J. Parallel Distrib. Comput. (2011), doi:10.1016/j.jpdc.2011.04.007Google Scholar
  39. 39.
    Miao, L., Qi, Y., Hou, D., Dai, Y., Shi, Y.: A multi-objective hybrid genetic algorithm for energy saving task scheduling in cmp system. In: Proc. of IEEE Int. Conf. on Systems, Man and Cybernetics (ICSMC 2008), pp. 197–201 (2008)Google Scholar
  40. 40.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer (1992)Google Scholar
  41. 41.
    Muhammad, R., Hussain, F., Hussain, O.: Neural network-based approach for predicting trust values based on non-uniform input in mobile applications. The Computer Journal Online (2011)Google Scholar
  42. 42.
    Olivier, I., Smith, D., Holland, J.: A study of permutation crossover operators on the travelling salesman problem. In: Proc. of the ICGA 1987, Cambridge, MA, pp. 224–230 (1987)Google Scholar
  43. 43.
    Pinel, F., Pecero, J., Bouvry, P., Khan, S.U.: Memory-aware green scheduling on multi-core processors. In: Proc. of the 39th IEEE International Conference on Parallel Processing (ICPP), pp. 485–488 (2010)Google Scholar
  44. 44.
    Shen, G., Zhang, Y.: A new evolutionary algorithm using shadow price guided operators. Applied Soft Computing 11(2), 1983–1992 (2011)CrossRefGoogle Scholar
  45. 45.
    Shen, G., Zhang, Y.: A shadow price guided genetic algorithm for energy aware task scheduling on cloud computers. In: Proc. of the 3rd International Conference on Swarm Intelligence - (ICSI 2011), pp. 522–529 (2011)Google Scholar
  46. 46.
    Song, S., Hwang, K., Kwok, Y.: Trusted grid computing with security binding and trust integration. J. of Grid Computing 3(1-2), 53–73 (2005)CrossRefGoogle Scholar
  47. 47.
    Song, S., Hwang, K., Kwok, Y.: Risk-resilient heuristics and genetic algorithms for security- assured grid job scheduling. IEEE Tran. on Computers 55(6), 703–719 (2006)CrossRefGoogle Scholar
  48. 48.
    Whitley, D., Rana, S., Heckendorn, R.: The island model genetic algorithm: On separability, population size and convergence. Journal of Computing and Information Technology 7, 33–47 (1998)Google Scholar
  49. 49.
    Wu, C.-C., Sun, R.-Y.: An integrated security-aware job scheduling strategy for large-scale computational grids. Future Generation Computer Systems 26(2), 198–206 (2010)CrossRefGoogle Scholar
  50. 50.
    Xhafa, F., Abraham, A.: Computational models and heuristic methods for grid scheduling problems. Future Generation Computer Systems 26, 608–621 (2010)CrossRefGoogle Scholar
  51. 51.
    Xhafa, F., Carretero, J., Abraham, A.: Genetic algorithm based schedulers for grid computing systems. Int. J. of Innovative Computing, Information and Control 3(5), 1053–1071 (2007)Google Scholar
  52. 52.
    Xhafa, F., Carretero, J., Barolli, L., Durresi, A.: Requirements for an event-based simulation package for grid systems. Journal of Interconnection Networks 8(2), 163–178 (2007)CrossRefGoogle Scholar
  53. 53.
    Zomaya, A.Y.: Energy-aware scheduling and resource allocation for large-scale distributed systems. In: 11th IEEE International Conference on High Performance Computing and Communications (HPCC), Seoul, Korea (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Joanna Kołodziej
    • 1
  • Samee U. Khan
    • 2
  • Lizhe Wang
    • 3
  • Dan Chen
    • 4
  • Albert Y. Zomaya
    • 5
  1. 1.Institute of Computer ScienceCracow University of TechnologyCracowPoland
  2. 2.Department of Electrical and Computer EngineeringNorth Dakota State UniversityFargoUSA
  3. 3.Center for Earth Observation and Digital EarthChinese Academy of SciencesBeijingChina
  4. 4.China University of GeosciencesWuhanChina
  5. 5.School of Information TechnologiesUniversity of SydneySydneyAustralia

Personalised recommendations