Solar Radiation as a Driver for Growth and Competition in Forest Stands

  • M. Leuchner
  • C. Hertel
  • T. Rötzer
  • T. Seifert
  • R. Weigt
  • H. Werner
  • A. Menzel
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 220)

Abstract

This chapter describes the spatial and temporal variability of biologically important wavebands of solar radiation as crucial drivers for growth and competition in forest ecosystems. Fundamental differences between beech and spruce in the penetration of radiation are mainly due to the different morphological crown habit. Thus, the dense upper beech canopy absorbs most of the incoming radiation in the very top layer, while more radiation can penetrate into the spruce canopy. In addition to the habit, reflectance properties play important roles for the spectral composition. Spruce exhibits higher levels of the blue/red ratio throughout the canopy. Only a small number of sunflecks can be observed in the shade crown of both species. A model scenario shows the level of light enhancement and the alteration of the spectral composition in a clearing. Phenological phases such as leaf unfolding and leaf fall can be estimated well by the red/far red ratio.

Keywords

Leaf Area Index Specific Leaf Area Spectral Ratio European Beech Incoming Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahrends HE, Etzold S, Kutsch WL, Stoeckli R, Bruegger R, Jeanneret F, Wanner H, Buchmann N, Eugster W (2009) Tree phenology and carbon dioxide fluxes: use of digital photography for process-based interpretation at the ecosystem scale. Clim Res 39:261–274CrossRefGoogle Scholar
  2. Ammer C (2000) Untersuchungen zum Einfluss von Fichtenaltbeständen auf die Entwicklung junger Buchen. Berichte aus der Holz- und Forstwirtschaft. Shaker Verlag, AachenGoogle Scholar
  3. Ammer C (2003) Growth and biomass partitioning of Fagus sylvatica L. and Quercus robur L. seedlings in response to shading and small changes in the R/FR-ratio of radiation. Ann Forest Sci 60:163–171CrossRefGoogle Scholar
  4. Baldocchi DD, Hutchinson BA, Matt DR, McMillen RT (1984) Seasonal variations in the radiation regime within an oak-hickory forest. Agric Forest Meteorol 33:177–191CrossRefGoogle Scholar
  5. Ballaré CL, Scopel AL, Sánchéz RA (1990) Far-red radiation reflected from adjacent leaves – an early signal of competition in plant canopies. Science 247:329–332CrossRefPubMedGoogle Scholar
  6. Brantley ST, Young DR (2009) Contribution of sunflecks is minimal in expanding shrub thickets compared to temperate forest. Ecology 90:1021–1029CrossRefPubMedGoogle Scholar
  7. Capers RS, Chazdon RL (2004) Rapid assessment of understory light availability in a wet tropical forest. Agric Forest Meteorol 123:177–185CrossRefGoogle Scholar
  8. Chazdon RL (1988) Sunflecks and their importance to forest understorey plants. Adv Ecol Res 18:1–63CrossRefGoogle Scholar
  9. Combes D, Sinoquet H, Varlet-Grancher C (2000) Preliminary measurements and simulation of the spatial distribution of the Morphogenetically Active Radiation (MAR) within isolated tree canopy. Ann Forest Sci 57:497–511CrossRefGoogle Scholar
  10. De Castro F (2000) Light spectral composition in a tropical forest: measurements and model. Tree Physiol 20:49–56CrossRefPubMedGoogle Scholar
  11. Federer CA, Tanner CB (1966) Spectral distribution of light in the forest. Ecology 47:555–560CrossRefGoogle Scholar
  12. Gordon DC, Percy KE, Riding RT (1998) Effects of UV-B radiation on epicuticular wax production and chemical composition of four Picea species. New Phytol 138:441–449CrossRefGoogle Scholar
  13. Grant RH (1997) Partitioning of biologically active radiation in plant canopies. Int J Biometeorol 40:26–40CrossRefGoogle Scholar
  14. Grant RH, Heisler GM, Gao W, Jenks M (2003) Ultraviolet leaf reflectance of common urban trees and the prediction of reflectance from leaf surface characteristics. Agric Forest Meteorol 129:127–139CrossRefGoogle Scholar
  15. Gratani L (1997) Canopy structure, vertical radiation profile and photosynthetic function in a Quercus ilex evergreen forest. Photosynthetica 33:139–149CrossRefGoogle Scholar
  16. Grote R (2002) Foliage and branch biomass estimation of coniferous and deciduous tree species. Silva Fennica 36(4):779–788Google Scholar
  17. Grote R, Pretzsch H (2002) A model for individual tree development based on physiological processes. Plant Biol 4:167–180CrossRefGoogle Scholar
  18. Häberle KH, Reiter IM, Nunn AJ, Gruppe A, Simon U, Gossner M, Werner H, Leuchner M, Heerdt C, Fabian P, Matyssek R (2003) KROCO, Freising, Germany: canopy research in a temperate mixed forest of Southern Germany. In: Basset Y, Horlyck V, Wright SJ (eds) Studying forest canopies from above: The International Canopy Crane Network. Smithsonian Tropical Research Institute and UNEP, Panama, pp 71–78Google Scholar
  19. Hendrich C (2000) Ein kybernetisches Licht-Biomasse-Modell für Fichten-Buchen-Mischbestände. Dissertation, MunichGoogle Scholar
  20. Hertel C, Leuchner M, Rötzer T, Menzel A (in press) Assessing stand structure of beech and spruce from measured spectral radiation properties and modeled leaf biomass parameters. Agric Forest Meteorol. doi: 10.1016/j.agrformet.2012.06.008Google Scholar
  21. Hertel C, Leuchner M, Menzel A (2011) Vertical variability of spectral ratios in a mature mixed forest stand. Agric Forest Meteorol 151:1096–1105CrossRefGoogle Scholar
  22. Kitao M, Löw M, Heerdt C, Grams TEE, Häberle KH, Matyssek R (2009) Effects of chronic elevated ozone exposure on gas exchange responses of adult beech trees (Fagus sylvatica) as related to the within-canopy light gradient. Environ Poll 157:537–544CrossRefGoogle Scholar
  23. Knyazikhin Y, Mießen G, Panfyorov O, Gravenhorst G (1997) Small-scale study of three-dimensional distribution of photosynthetically active radiation in a forest. Agric Forest Meteorol 88:215–239CrossRefGoogle Scholar
  24. Leuchner M (2006) Messung und Modellierung der spektralen Strahlungsverteilung in einem Fichten-Buchen-Mischbestand. Dissertation, MunichGoogle Scholar
  25. Leuchner M, Hertel C, Menzel A (2011) Spatial variability of photosynthetically active radiation in European beech and Norway spruce. Agric Forest Meteorol 151(9):1226–1232. doi: 10.1016/j.agrformet.2011.04.014 CrossRefGoogle Scholar
  26. Matsuda R, Ohashi-Kaneko K, Fukiwara K, Goto E, Kurata K (2007) Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia oleracea L.) leaves with regard to the acclimation of photosynthesis to growth irradiance. Soil Sci Plant Nutr 53:459–465CrossRefGoogle Scholar
  27. Méthy M, Fabreguettes J, Jardon F, Roy J (1987) Design of a simple instrument for the measurement of red/far-red ratios. Acta Oecologica/Oecol Plant 8:281–290Google Scholar
  28. Morgan DC, Warrington IJ, Rook DA (1985) Some observations on the spectral distribution characteristics of short-wave radiation within Pinus radiata D. Don canopies. Plant Cell Environ 8:201–206Google Scholar
  29. Navrátil M, Spunda V, Marková I, Janous D (2007) Spectral composition of photosynthetically active radiation penetrating into a Norway spruce canopy: the opposite dynamics of the blue/red spectral ration during clear and overcast days. Trees 21:311–320CrossRefGoogle Scholar
  30. Nunn A (2004) Risiko-Einschätzung der chronisch erhöhten Ozonbelastung mittels “Free-Air”-Begasung von Buchen (Fagus sylvatica) und Fichten (Picea abies) eines forstlich begründeten Mischbestandes. Dissertation, MunichGoogle Scholar
  31. Pretzsch H, Kahn M, Grote R (1998) Die Fichten-Buchen-Mischbestände des Sonderforschungsbereiches “Wachstum oder Parasitenabwehr?” im Kranzberger Forst. Forstw Cbl 117:241–257CrossRefGoogle Scholar
  32. Richardson AD, Braswell BH, Hollinger DY, Jenkins JP, Ollinger SV (2009) Near-surface remote sensing of spatial and temporal variation in canopy phenology. Ecol Appl 19:1417–1428CrossRefPubMedGoogle Scholar
  33. Ross MS, Flanagan LB, La Roi GH (1986) Seasonal and successional changes in light quality and quantity in the understory of boreal forest ecosystems. Can J Bot 64:2792–2799CrossRefGoogle Scholar
  34. Rötzer T, Leuchner M, Nunn AJ (2010) Simulating stand climate, phenology, and photosynthesis of a forest stand with a process based growth model. Int J Biometeorol 54(4):449–464CrossRefPubMedGoogle Scholar
  35. Roujean JL (1999) Measurements of PAR transmittance within boreal forest stands during BOREAS. Agric Forest Meteorol 93:1–6CrossRefGoogle Scholar
  36. Smith H (1994) Sensing the light environment: the functions of the phytochrome family. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in plants, 2nd edn. Kluwer Academic Publishers, Dordrecht Boston London, pp 377–416CrossRefGoogle Scholar
  37. Smith H (2000) Phytochromes and light signal perception by plants - an emerging synthesis. Nature 407:585–591CrossRefPubMedGoogle Scholar
  38. Smith H, Whitelam GC (1997) The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. Plant Cell Environ 20:840–844CrossRefGoogle Scholar
  39. Vierling LA, Wessman CA (2000) Photosynthetically active radiation heterogeneity within a monodominant Congolese rain forest canopy. Agric Forest Meteorol 103:265–278CrossRefGoogle Scholar
  40. Wipfler P, Seifert T, Heerdt C, Werner H, Pretzsch H (2005) Growth of adult Norway Spruce (Picea abies [L.] Karst.) and European Beech (Fagus sylvatica [L.]) under free-air ozone fumigation. Plant Biol 7:611–618CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. Leuchner
    • 1
  • C. Hertel
    • 1
  • T. Rötzer
    • 2
  • T. Seifert
    • 3
  • R. Weigt
    • 4
  • H. Werner
    • 1
  • A. Menzel
    • 1
  1. 1.EcoclimatologyTechnische Universität MünchenFreisingGermany
  2. 2.Chair of Forest Growth and Yield ScienceTechnische Universität MünchenFreisingGermany
  3. 3.Forest and Wood ScienceStellenbosch UniversityMatielandSouth Africa
  4. 4.Organismic Biology: MycologyLudwig-Maximilians-Universität MünchenMünchenGermany

Personalised recommendations