Skip to main content

Conifer Defense Against Insects and Fungal Pathogens

  • Chapter
  • First Online:

Part of the book series: Ecological Studies ((ECOLSTUD,volume 220))

Abstract

In this chapter we provide an overview of the many different defense strategies of conifers against insect pests and fungal pathogens. Much of this chapter deals with the economically and ecologically important species of pine (Pinus spp.) and spruce (Picea spp.). We highlight the anatomical and chemical defenses as well as their biochemical, molecular, and genomic underpinnings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott E, Hall D, Hamberger B, Bohlmann J (2010) Laser microdissection of conifer stem tissues: Isolation and analysis of high quality RNA, terpene synthase enzyme activity and terpenoid metabolites from resin ducts and cambial zone tissue of white spruce (Picea glauca). BMC Plant Biol 10(106):1–16

    Google Scholar 

  • Adomas A, Heller G, Li GS, Olson A, Chu TM, Osborne J, Craig D, Van Zyl L, Wolfinger R, Sederoff R, Dean RA, Stenlid J, Finlay R, Asiegbu FO (2007) Transcript profiling of a conifer pathosystem: response of Pinus sylvestris root tissues to pathogen (Heterobasidion annosum) invasion. Tree Physiol 27:1441–1458

    PubMed  CAS  Google Scholar 

  • Alfaro RI, Vansickle GA, Thomson AJ, Wegwitz E (1982) Tree mortality and radial growth losses caused by the western spruce budworm in a Douglas-fir stand in British-Columbia. Can J Forest Res 12:780–787

    Google Scholar 

  • Alfaro RI, Borden JH, King JN, Tomlin ES, McIntosh RL, Bohlmann J (2002) Mechanisms of resistance in conifers against shoot infesting insects – The case of the white pine weevil Pissodes strobi (Peck): (Coleoptera: Curculionidae). In: Wagner MR, Clancy KM, Lieutier F, Paine TD (eds) 21st International congress of entomology. Springer, Iguassu Falls, Brazil, pp 105–130

    Google Scholar 

  • Allona I, Quinn M, Shoop E, Swope K, St Cyr S, Carlis J, Riedl J, Retzel E, Campbell MM, Sederoff R, Whetten RW (1998) Analysis of xylem formation in pine by cDNA sequencing. Proc Natl Acad Sci USA 95:9693–9698

    PubMed  CAS  PubMed Central  Google Scholar 

  • Asiegbu FO, Denekamp M, Daniel G, Johansson M (1995) Immune cytochemical-localization of pathogenesis-related proteins in roots of Norway Spruce infected with Heterobasidion-Annosum. Eur J Forest Pathol 25:169–178

    Google Scholar 

  • Asiegbu FO, Choi WB, Li GS, Nahalkova J, Dean RA (2003) Isolation of a novel antimicrobial peptide gene (Sp-AMP) homologue from Pinus sylvestris (Scots pine) following infection with the root rot fungus Heterobasidion annosum. FEMS Microbiol Lett 228:27–31

    PubMed  CAS  Google Scholar 

  • Asiegbu FO, Adomas A, Stenlid J (2005a) Conifer root and butt rot caused by Heterobasidion annosum (Fr.) Bref. s.l. Mol Plant Pathol 6:395–409

    PubMed  Google Scholar 

  • Asiegbu FO, Nahalkova J, Li GS (2005b) Pathogen-inducible cDNAs from the interaction of the root rot fungus Heterobasidion annosum with Scots pine (Pinus sylvestris L.). Plant Sci 168:365–372

    CAS  Google Scholar 

  • Bedon F, Levasseur C, Grima-Pettenati J, Seguin A, MacKay J (2009) Sequence analysis and functional characterization of the promoter of the Picea glauca cinnamyl alcohol dehydrogenase gene in transgenic white spruce plants. Plant Cell Rep 28:787–800

    PubMed  CAS  Google Scholar 

  • Blodgett JT, Eyles A, Bonello P (2007) Organ-dependent induction of systemic resistance and systemic susceptibility in Pinus nigra inoculated with Sphaeropsis sapinea and Diplodia scrobiculata. Tree Physiol 27:511–517

    PubMed  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    PubMed  CAS  Google Scholar 

  • Bohlmann J (2008) Insect-induced terpenoid defenses in spruce. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, New York, pp 173–187

    Google Scholar 

  • Bois E, Lieutier F (1997) Phenolic response of Scots pine clones to inoculation with Leptographium wingfieldii, a fungus associated with Tomicus piniperda. Plant Physiol Biochem 35:819–825

    CAS  Google Scholar 

  • Bonello P, Blodgett JT (2003) Pinus nigra-Sphaeropsis sapinea as a model pathosystem to investigate local and systemic effects of fungal infection of pines. Physiol Mol Plant Pathol 63:249–261

    Google Scholar 

  • Bonello P, Gordon TR, Storer AJ (2001) Systemic induced resistance in Monterey pine. Forest Pathol 31:99–106

    Google Scholar 

  • Bonello P, Storer AJ, Gordon TR, Wood DL (2003) Systemic effects of Heterobasidion annosum on ferulic acid glucoside and lignin of presymptomatic ponderosa pine phloem, and potential effects on bark-beetle-associated fungi. J Chem Ecol 29:1167–1182

    PubMed  CAS  Google Scholar 

  • Bonello P, Gordon TR, Herms DA, Wood DL, Erbilgin N (2006) Nature and ecological implications of pathogen-induced systemic resistance in conifers: A novel hypothesis. Physiol Mol Plant Pathol 68:95–104

    CAS  Google Scholar 

  • Brignolas F, Lacroix B, Lieutier F, Sauvard D, Drouet A, Claudot AC, Yart A, Berryman AA, Christiansen E (1995) Induced responses in phenolic metabolism in 2 Norway spruce clones after wounding and inoculations with Ophiostoma-polonicum, a bark beetle-associated fungus. Plant Physiol 109:821–827

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brignolas F, Lieutier F, Sauvard D, Christiansen E, Berryman AA (1998) Phenolic predictors for Norway spruce resistance to the bark beetle Ips typographus (Coleoptera: Scolytidae) and an associated fungus, Ceratocystis polonica. Can J Forest Res 28:720–728

    CAS  Google Scholar 

  • Butland SL, Chow ML, Ellis BE (1998) A diverse family of phenylalanine ammonia-lyase genes expressed in pine trees and cell cultures. Plant Mol Biol 37:15–24

    PubMed  CAS  Google Scholar 

  • Celimene CC, Smith DR, Young RA, Stanosz GR (2001) In vitro inhibition of Sphaeropsis sapinea by natural stilbenes. Phytochemistry 56:161–165

    PubMed  CAS  Google Scholar 

  • Chatthai M, Osusky M, Osuska L, Yevtushenko D, Misra S (2004) Functional analysis of a Douglas-fir metallothionein-like gene promoter: transient assays in zygotic and somatic embryos and stable transformation in transgenic tobacco. Planta 220:118–128

    PubMed  CAS  Google Scholar 

  • Chiron H, Drouet A, Lieutier F, Payer HD, Ernst D, Sandermann H (2000) Gene induction of stilbene biosynthesis in Scots pine in response to ozone treatment, wounding, and fungal infection. Plant Physiol 124:865–872

    PubMed  CAS  PubMed Central  Google Scholar 

  • Christiansen E, Krokene P, Berryman AA, Franceschi VR, Krekling T, Lieutier F, Lonneborg A, Solheim H (1999) Mechanical injury and fungal infection induce acquired resistance in Norway spruce. Tree Physiol 19:399–403

    PubMed  Google Scholar 

  • Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinases. Plant J 3:31–40

    PubMed  CAS  Google Scholar 

  • Cordoba E, Salmi M, Leon P (2009) Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. J Exp Bot 60:2933–2943

    PubMed  CAS  Google Scholar 

  • Croteau R, Gurkewitz S, Johnson MA, Fisk HJ (1987) Biochemistry of oleoresinosis 1 – monoterpene and diterpene biosynthesis in lodgepole pine saplings infected with Ceratocystis-clavigera or treated with carbohydrate elicitors. Plant Physiol 85:1123–1128

    PubMed  CAS  PubMed Central  Google Scholar 

  • Davin LB, Lewis NG (2000) Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiol 123:453–461

    PubMed  CAS  PubMed Central  Google Scholar 

  • Davin LB, Wang HB, Crowell AL, Bedgar DL, Martin DM, Sarkanen S, Lewis NG (1997) Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275:362–366

    PubMed  CAS  Google Scholar 

  • Davis JM, Wu HG, Cooke JEK, Reed JM, Luce KS, Michler CH (2002) Pathogen challenge, salicylic acid, and jasmonic acid regulate expression of chitinase gene homologs in pine. Mol Plant Microbe Interact 15:380–387

    PubMed  CAS  Google Scholar 

  • De Lucca AJ, Cleveland TE, Wedge DE (2005) Plant-derived antifungal proteins and peptides. Can J Microbiol 51:1001–1014

    PubMed  Google Scholar 

  • Delorme L, Lieutier F (1990) Monoterpene composition of the preformed and induced resins of Scots pine, and their effect on bark beetles and associated fungi. Eur J Forest Pathol 20:304–316

    Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MSS, Wang LJ (2002) The phenylpropanoid pathway and plant defence - a genomics perspective. Mol Plant Pathol 3:371–390

    PubMed  CAS  Google Scholar 

  • Dubos C, Plomion C (2001) Drought differentially affects expression of a PR-10 protein, in needles of maritime pine (Pinus pinaster Ait.) seedlings. J Exp Bot 52:1143–1144

    PubMed  CAS  Google Scholar 

  • Ekramoddoullah AKM, Yu XS, Sturrock R, Zamani A, Taylor D (2000) Detection and seasonal expression pattern of a pathogenesis-related protein (PR-10) in Douglas-fir (Pseudotsuga menziesii) tissues. Physiol Plant 110:240–247

    CAS  Google Scholar 

  • Elfstrand M, Fossdal CG, Swedjemark G, Clapham D, Olsson O, Sitbon F, Sharma P, Lonneborg A, von Arnold S (2001) Identification of candidate genes for use in molecular breeding - A case study with the Norway spruce defensin-like gene, Spi 1. Silvae Genet 50:75–81

    Google Scholar 

  • Erbilgin N, Krokene P, Christiansen E, Zeneli G, Gershenzon J (2006) Exogenous application of methyl jasmonate elicits defenses in Norway spruce (Picea abies) and reduces host colonization by the bark beetle Ips typographus. Oecologia 148:426–436

    PubMed  Google Scholar 

  • Evensen PC, Solheim H, Hoiland K, Stenersen J (2000) Induced resistance of Norway spruce, variation of phenolic compounds and their effects on fungal pathogens. Forest Pathol 30:97–108

    Google Scholar 

  • Eyles A, Chorbadjian R, Wallis C, Hansen R, Cipollini D, Herms D, Bonello P (2007) Cross-induction of systemic induced resistance between an insect and a fungal pathogen in Austrian pine over a fertility gradient. Oecologia 153:365–374

    PubMed  Google Scholar 

  • Faccoli M, Schlyter F (2007) Conifer phenolic resistance markers are bark beetle antifeedant semiochemicals. Agric Forest Entomol 9:237–245

    Google Scholar 

  • Faldt J, Martin D, Miller B, Rawat S, Bohlmann J (2003) Traumatic resin defense in Norway spruce (Picea abies): Methyl jasmonate-induced terpene synthase gene expression, and cDNA cloning and functional characterization of (+)-3-carene synthase. Plant Mol Biol 51:119–133

    PubMed  Google Scholar 

  • Fliegmann J, Schroder G, Schanz S, Britsch L, Schroder J (1992) Molecular analysis of chalcone and dihydropinosylvin synthase from Scots pine (Pinus-sylvestris), and differential regulation of these and related enzyme-activities in stressed plants. Plant Mol Biol 18:489–503

    PubMed  CAS  Google Scholar 

  • Fossdal CG, Sharma P, Lonneborg A (2001) Isolation of the first putative peroxidase cDNA from a conifer and the local and systemic accumulation of related proteins upon pathogen infection. Plant Mol Biol 47:423–435

    PubMed  CAS  Google Scholar 

  • Fossdal CG, Hietala AM, Kvaalen H, Solheim H (2006) Changes in host chitinase isoforms in relation to wounding and colonization by Heterobasidion annosum: early and strong defense response in 33-year-old resistant Norway spruce clone. Tree Physiol 26:169–177

    PubMed  CAS  Google Scholar 

  • Franceschi VR, Krekling T, Berryman AA, Christiansen E (1998) Specialized phloem parenchyma cells in Norway spruce (Pinaceae) bark are an important site of defense reactions. Am J Bot 85:601–615

    PubMed  CAS  Google Scholar 

  • Franceschi VR, Krokene P, Krekling T, Christiansen E (2000) Phloem parenchyma cells are involved in local and distant defense responses to fungal inoculation or bark-beetle attack in Norway spruce (Pinaceae). Am J Bot 87:314–326

    PubMed  CAS  Google Scholar 

  • Franceschi VR, Krekling T, Christiansen E (2002) Application of methyl jasmonate on Picea abies (Pinaceae) stems induces defense-related responses in phloem and xylem. Am J Bot 89:578–586

    PubMed  CAS  Google Scholar 

  • Franceschi VR, Krokene P, Christiansen E, Krekling T (2005) Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol 167:353–375

    PubMed  CAS  Google Scholar 

  • Gehlert R, Schoppner A, Kindl H (1990) Stilbene synthase from seedlings of Pinus-Sylvestris - purification and induction in response to fungal infection. Mol Plant Microbe Interact 3:444–449

    CAS  Google Scholar 

  • Gershenzon J (1994) Metabolic costs of terpenoid accumulation in higher-plants. J Chem Ecol 20:1281–1328

    PubMed  CAS  Google Scholar 

  • Gordon TR (2006) Pitch canker disease of pines. Phytopathology 96:657–659

    PubMed  CAS  Google Scholar 

  • Gould N, Reglinski T, Spiers M, Taylor JT (2008) Physiological trade-offs associated with methyl jasmonate – induced resistance in Pinus radiata. Can J Forest Res 38:677–684

    Google Scholar 

  • Gout R, Kovalyova V (2008) Inhibition of growth of the phytopathogenic organisms by Scots pine (Pinus sylvestris L.) defensin. Sylwan 152:54–58

    Google Scholar 

  • Gronberg H, Hietala AM, Haahtela K (2009) Analysing scots pine defence-related transcripts and fungal DNA levels in seedlings single- or dual-inoculated with endophytic and pathogenic Rhizoctonia species. Forest Pathol 39:377–389

    Google Scholar 

  • Hall DE, Robert JA, Keeling CI, Domanski D, Qesada AL, Jancsik S, Kuzyk M, Br H, Borchers CH, Bohlmann J (2011) An integrated genomic, proteomic, and biochemical analysis of (+)-3-carene biosynthesis in Sitka spruce (Picea sitchensis) genotypes which are resistant or susceptible to white pine weevil. Plant J 65:936–948

    PubMed  CAS  Google Scholar 

  • Hamberger B, Bohlmann J (2006) Cytochrome P450 mono-oxygenases in conifer genomes: discovery of members of the terpenoid oxygenase superfamily in spruce and pine. Biochem Soc Trans 34:1209–1214

    PubMed  CAS  Google Scholar 

  • Hietala AM, Kvaalen H, Schmidt A, Johnk N, Solheim H, Fossdal CG (2004) Temporal and spatial profiles of chitinase expression by Norway spruce in response to bark colonization by Heterobasidion annosum. Appl Environ Microbiol 70:3948–3953

    PubMed  CAS  PubMed Central  Google Scholar 

  • Himejima M, Hobson KR, Otsuka T, Wood DL, Kubo I (1992) Antimicrobial terpenes from oleoresin of Ponderosa pine Tree Pinus-ponderosa - a defense-mechanism against microbial invasion. J Chem Ecol 18:1809–1818

    PubMed  CAS  Google Scholar 

  • Huber DPW, Ralph S, Bohlmann J (2004) Genomic hardwiring and phenotypic plasticity of terpenoid-based defenses in conifers. J Chem Ecol 30:2399–2418

    PubMed  CAS  Google Scholar 

  • Huber DPW, Philippe RN, Madilao LL, Sturrock RN, Bohlmann J (2005) Changes in anatomy and terpene chemistry in roots of Douglas-fir seedlings following treatment with methyl jasmonate. Tree Physiol 25:1075–1083

    PubMed  CAS  Google Scholar 

  • Hudgins JW, Franceschi VR (2004) Methyl jasmonate-induced ethylene production is responsible for conifer phloem defense responses and reprogramming of stem cambial zone for traumatic resin duct formation. Plant Physiol 135:2134–2149

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hudgins JW, Christiansen E, Franceschi VR (2003) Methyl jasmonate induces changes mimicking anatomical defenses in diverse members of the Pinaceae. Tree Physiol 23:361–371

    PubMed  CAS  Google Scholar 

  • Hudgins JW, Christiansen E, Franceschi VR (2004) Induction of anatomically based defense responses in stems of diverse conifers by methyl jasmonate: a phylogenetic perspective. Tree Physiol 24:251–264

    PubMed  CAS  Google Scholar 

  • Hudgins JW, McDonald GI, Zambino PJ, Klopfenstein NB, Franceschi VR (2005) Anatomical and cellular responses of Pinus monticola stem tissues to invasion by Cronartium ribicola. Forest Pathol 35:423–443

    Google Scholar 

  • Hudgins JW, Ralph SG, Franceschi VR, Bohlmann J (2006) Ethylene in induced conifer defense: cDNA cloning, protein expression, and cellular and subcellular localization of 1-aminocyclopropane-1-carboxylate oxidase in resin duct and phenolic parenchyma cells. Planta 224:865–877

    PubMed  CAS  Google Scholar 

  • Islam MA, Sturrock RN, Holmes TA, Ekramoddoullah AKM (2009) Ultrastructural studies of Phellinus sulphurascens infection of Douglas-fir roots and immunolocalization of host pathogenesis-related proteins. Mycol Res 113:700–712

    PubMed  CAS  Google Scholar 

  • Kasprzewska A (2003) Plant chitinases - regulation and function. Cell Mol Biol Lett 8:809–824

    PubMed  CAS  Google Scholar 

  • Katoh S, Croteau R (1998) Individual variation in constitutive and induced monoterpene biosynthesis in grand fir. Phytochemistry 47:577–582

    CAS  Google Scholar 

  • Keeling CI, Bohlmann J (2006a) Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol 170:657–675

    PubMed  CAS  Google Scholar 

  • Keeling CI, Bohlmann J (2006b) Diterpene resin acids in conifers. Phytochemistry 67:2415–2423

    PubMed  CAS  Google Scholar 

  • Kim YB, Kim SM, Kang MK, Kuzuyama T, Lee JK, Park SC, Shin SC, Kim SU (2009) Regulation of resin acid synthesis in Pinus densiflora by differential transcription of genes encoding multiple 1-deoxy-D-xylulose 5-phosphate synthase and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase genes. Tree Physiol 29:737–749

    PubMed  CAS  Google Scholar 

  • King JN, Alfaro RI (2009) Developing Sitka spruce populations for resistance to the white pine weevil: summary of research and breeding program. Technical Report 50, Ministry of Forests and Range, Forest Science Program, Victoria, BC. http://www.for.gov.bc.ca/hfd/pubs/Docs/Tr/Tr050.htm

  • Kiraly L, Barnaz B, Kiralyz Z (2007) Plant resistance to pathogen infection: Forms and mechanisms of innate and acquired resistance. J Phytopathol 155:385–396

    CAS  Google Scholar 

  • Kirst M, Johnson AF, Baucom C, Ulrich E, Hubbard K, Staggs R, Paule C, Retzel E, Whetten R, Sederoff R (2003) Apparent homology of expressed genes from wood-forming tissues of loblolly pine (Pinus taeda L.) with Arabidopsis thaliana. Proc Natl Acad Sci USA 100:7383–7388

    PubMed  PubMed Central  Google Scholar 

  • Kodan A, Kuroda H, Sakai F (2002) A stilbene synthase from Japanese red pine (Pinus densiflora): Implications for phytoalexin accumulation and down-regulation of flavonoid biosynthesis. Proc Natl Acad Sci USA 99:3335–3339

    PubMed  CAS  PubMed Central  Google Scholar 

  • Koornneef A, Pieterse CMJ (2008) Cross talk in defense signaling. Plant Physiol 146:839–844

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kopper BJ, Illman BL, Kersten PJ, Klepzig KD, Raffa KF (2005) Effects of diterpene acids on components of a conifer bark beetle-fungal interaction: Tolerance by Ips pini and sensitivity by its associate Ophiostoma ips. Environ Entomol 34:486–493

    CAS  Google Scholar 

  • Koutaniemi S, Warinowski T, Karkonen A, Alatalo E, Fossdal CG, Saranpaa P, Laakso T, Fagerstedt KV, Simola LK, Paulin L, Rudd S, Teeri TH (2007) Expression profiling of the lignin biosynthetic pathway in Norway spruce using EST sequencing and real-time RT-PCR. Plant Mol Biol 65:311–328

    PubMed  CAS  Google Scholar 

  • Kovalyova VA, Gout RT (2008) Molecular cloning and characterization of Scotch pine defensin 2. Cytol Genet 42:408–412

    Google Scholar 

  • Kozlowski G, Metraux JP (1998) Infection of Norway spruce (Picea abies (L) Karst) seedlings with Pythium irregulare Buism and Pythium ultimum Trow: histological and biochemical responses. Eur J Plant Pathol 104:225–234

    CAS  Google Scholar 

  • Kozlowski G, Buchala A, Metraux JP (1999) Methyl jasmonate protects Norway spruce [Picea abies (L.) Karst.] seedlings against Pythium ultimum Trow. Physiol Mol Plant Pathol 55:53–58

    CAS  Google Scholar 

  • Kramer KJ, Muthukrishnan S (1997) Insect chitinases: Molecular biology and potential use as biopesticides. Insect Biochem Mol Biol 27:887–900

    PubMed  CAS  Google Scholar 

  • Krekling T, Franceschi VR, Krokene P, Solheim H (2004) Differential anatomical response of Norway spruce stem tissues to sterile and fungus infected inoculations. Trees 18:1–9

    Google Scholar 

  • Krokene P, Christiansen E, Solheim H, Franceschi VR, Berryman AA (1999) Induced resistance to pathogenic fungi in Norway spruce. Plant Physiol 121:565–569

    PubMed  CAS  PubMed Central  Google Scholar 

  • Krokene P, Solheim H, Krekling T, Christiansen E (2003) Inducible anatomical defense responses in Norway spruce stems and their possible role in induced resistance. Tree Physiol 23:191–197

    PubMed  Google Scholar 

  • Krokene P, Nagy NE, Solheim H (2008) Methyl jasmonate and oxalic acid treatment of Norway spruce: anatomically based defense responses and increased resistance against fungal infection. Tree Physiol 28:29–35

    PubMed  CAS  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331

    PubMed  CAS  Google Scholar 

  • Langenheim JH (2003) Plant resins: chemistry, evolution, ecology, and ethnobotany. Timber, Portland, OR, p 586

    Google Scholar 

  • Li SH, Schneider B, Gershenzon J (2007) Microchemical analysis of laser-microdissected stone cells of Norway spruce by cryogenic nuclear magnetic resonance spectroscopy. Planta 225:771–779

    PubMed  CAS  Google Scholar 

  • Lieutier F (2002) Mechanisms of resistance in conifers and bark beetle attack strategies. In: Wagner MR, Clancy KM, Lieutier F, Paine TD (eds) 21st International congress of entomology. Springer, Iguassu Falls, Brazil, pp 105–130

    Google Scholar 

  • Lippert D, Chowrira S, Ralph SG, Zhuang J, Aeschliman D, Ritland C, Ritland K, Bohlmann J (2007) Conifer defense against insects: Proteome analysis of Sitka spruce (Picea sitchensis) bark induced by mechanical wounding or feeding by white pine weevils (Pissodes strobi). Proteomics 7:248–270

    PubMed  CAS  Google Scholar 

  • Liu JJ, Ekramoddoullah AKM, Yu XS (2003) Differential expression of multiple PR10 proteins in western white pine following wounding, fungal infection and cold-hardening. Physiol Plant 119:544–553

    CAS  Google Scholar 

  • Liu RJ, Ekramoddoullah AKM, Zamani A (2005) A class IV chitinase is up-regulated by fungal infection and abiotic stresses and associated with slow-canker-growth resistance to Cronartium ribicola in Western white pine (Pinus monticola). Phytopathology 95:284–291

    PubMed  CAS  Google Scholar 

  • Luchi N, Ma R, Capretti P, Bonello P (2005) Systemic induction of traumatic resin ducts and resin flow in Austrian pine by wounding and inoculation with Sphaeropsis sapinea and Diplodia scrobiculata. Planta 221:75–84

    PubMed  CAS  Google Scholar 

  • Manninen AM, Utriainen J, Holopainen T, Kainulainen P (2002) Terpenoids in the wood of Scots pine and Norway spruce seedlings exposed to ozone at different nitrogen availability. Can J Forest Res 32:2140–2145

    CAS  Google Scholar 

  • Martin D, Tholl D, Gershenzon J, Bohlmann J (2002) Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant Physiol 129:1003–1018

    PubMed  CAS  PubMed Central  Google Scholar 

  • Martin DM, Gershenzon J, Bohlmann J (2003) Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiol 132:1586–1599

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mattheus N, Ekramoddoullah AKM, Lee SP (2003) Isolation of high-quality RNA from white spruce tissue using a three-stage purification method and subsequent cloning of a transcript from the PR-10 gene family. Phytochem Anal 14:209–215

    PubMed  CAS  Google Scholar 

  • Mauch F, Mauchmani B, Boller T (1988) Antifungal hydrolases in pea tissue.2. inhibition of fungal growth by combinations of chitinase and beta-1,3-Glucanase. Plant Physiol 88:936–942

    PubMed  CAS  PubMed Central  Google Scholar 

  • McKay SAB, Hunter WL, Godard KA, Wang SX, Martin DM, Bohlmann J, Plant AL (2003) Insect attack and wounding induce traumatic resin duct development and gene expression of (-)-pinene synthase in Sitka spruce. Plant Physiol 133:368–378

    PubMed  CAS  PubMed Central  Google Scholar 

  • Meins F, Fritig B, Linthorst H, Mikkelsen J, Neuhaus J, Ryals J (1994) Plant chitinase genes. Plant Mol Biol Rep 12:S22–S28

    CAS  Google Scholar 

  • Miller RH, Berryman AA, Ryan CA (1986) Biotic elicitors of defense reactions in lodgepole pine. Phytochemistry 25:611–612

    CAS  Google Scholar 

  • Miller B, Madilao LL, Ralph S, Bohlmann J (2005) Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce. Plant Physiol 137:369–382

    PubMed  CAS  PubMed Central  Google Scholar 

  • Moreira X, Sampedro L, Zas R (2009) Defensive responses of Pinus pinaster seedlings to exogenous application of methyl jasmonate: Concentration effect and systemic response. Environ Exp Bot 67:94–100

    CAS  Google Scholar 

  • Nagy NE, Franceschi VR, Solheim H, Krekling T, Christiansen E (2000) Wound-induced traumatic resin duct development in stems of Norway spruce (Pinaceae): Anatomy and cytochemical traits. Am J Bot 87:302–313

    PubMed  CAS  Google Scholar 

  • Nagy NE, Fossdal CG, Krokene P, Krekling T, Lonneborg A, Solheim H (2004) Induced responses to pathogen infection in Norway spruce phloem: changes in polyphenolic parenchyma cells, chalcone synthase transcript levels and peroxidase activity. Tree Physiol 24:505–515

    PubMed  CAS  Google Scholar 

  • Nealis VG, Noseworthy MK, Turnquist R, Waring VR (2009) Balancing risks of disturbance from mountain pine beetle and western spruce budworm. Can J Forest Res 39:839–848

    Google Scholar 

  • Neuhaus JM (1999) Plant chitinases (PR-3, PR-4, PR-8, PR-11). In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants. CRC, Boca Ranton, pp 77–105

    Google Scholar 

  • Nordlander G (1990) Limonene inhibits attraction to alpha-pinene in the pine weevils Hylobius-abietis and H-pinastri. J Chem Ecol 16:1307–1320

    PubMed  CAS  Google Scholar 

  • Paine TD, Hanlon CC (1994) Influence of oleoresin constituents from Pinus-Ponderosa and Pinus-Jeffreyi on growth of mycangial fungi from Dendroctonus-Ponderosae and Dendroctonus-Jeffreyi. J Chem Ecol 20:2551–2563

    PubMed  CAS  Google Scholar 

  • Paine TD, Raffa KF, Harrington TC (1997) Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu Rev Entomol 42:179–206

    PubMed  CAS  Google Scholar 

  • Pan HF, Lundgren LN (1996) Phenolics from inner bark of Pinus sylvestris. Phytochemistry 42:1185–1189

    CAS  Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    PubMed  CAS  Google Scholar 

  • Pearce RB (1996) Antimicrobial defences in the wood of living trees. New Phytol 132:203–233

    CAS  Google Scholar 

  • Pervieux I, Bourassa M, Laurans F, Hamelin R, Seguin A (2004) A spruce defensin showing strong antifungal activity and increased transcript accumulation after wounding and jasmonate treatments. Physiol Mol Plant Pathol 64:331–341

    CAS  Google Scholar 

  • Phillips MA, Croteau RB (1999) Resin-based defenses in conifers. Trends Plant Sci 4:184–190

    PubMed  Google Scholar 

  • Phillips MA, Walter MH, Ralph SG, Dabrowska P, Luck K, Uros EM, Boland W, Strack D, Rodriguez-Concepcion M, Bohlmann J, Gershenzon J (2007) Functional identification and differential expression of 1-deoxy-D-xylulose 5-phosphate synthase in induced terpenoid resin formation of Norway spruce (Picea abies). Plant Mol Biol 65:243–257

    PubMed  CAS  Google Scholar 

  • Piggott N, Ekramoddoullah AKM, Liu JJ, Yu XS (2004) Gene cloning of a thaumatin-like (PR-5) protein of western white pine (Pinus monticola D. Don) and expression studies of members of the PR-5 group. Physiol Mol Plant Pathol 64:1–8

    CAS  Google Scholar 

  • Popp MP, Johnson JD, Lesney MS (1995) Changes in ethylene production and monoterpene concentration in slash pine and loblolly-pine following inoculation with bark beetle vectored fungi. Tree Physiol 15:807–812

    CAS  Google Scholar 

  • Preisig-Muller R, Schwekendiek A, Brehm I, Reif HJ, Kindl H (1999) Characterization of a pine multigene family containing elicitor-responsive stilbene synthase genes. Plant Mol Biol 39:221–229

    PubMed  CAS  Google Scholar 

  • Raffa KF, Berryman AA (1982) Physiological differences between lodgepole pines resistant and susceptible to the mountain pine-beetle (Coleoptera, Scolytidae) and associated microorganisms. Environ Entomol 11:486–492

    CAS  Google Scholar 

  • Raffa K, Aukema B, Erbilgin N, Klepzig K, Wallin K (2005) Interactions among conifer terpenoids and bark beetles across multiple levels of scale: an attempt to understand links between population patterns and physiological processes. Recent Adv Phytochem 39:80–118

    Google Scholar 

  • Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke JA, Turner MG, Romme WH (2008) Cross-scale drivers of natural disturbances prone to anthropogenic amplification: The dynamics of bark beetle eruptions. Bioscience 58:501–517

    Google Scholar 

  • Ralph SG, Yueh H, Friedmann M, Aeschliman D, Zeznik JA, Nelson CC, Butterfield YSN, Kirkpatrick R, Liu J, Jones SJM, Marra MA, Douglas CJ, Ritland K, Bohlmann J (2006a) Conifer defence against insects: microarray gene expression profiling of Sitka spruce (Picea sitchensis) induced by mechanical wounding or feeding by spruce budworms (Choristoneura occidentalis) or white pine weevils (Pissodes strobi) reveals large-scale changes of the host transcriptome. Plant Cell Environ 29:1545–1570

    PubMed  Google Scholar 

  • Ralph S, Park JY, Bohlmann J, Mansfield SD (2006b) Dirigent proteins in conifer defense: gene discovery, phylogeny, and differential wound- and insect-induced expression of a family of DIR and DIR-like genes in spruce (Picea spp.). Plant Mol Biol 60:21–40

    PubMed  CAS  Google Scholar 

  • Ralph SG, Jancsik S, Bohlmann J (2007a) Dirigent proteins in conifer defense II: Extended gene discovery, phylogeny, and constitutive and stress-induced gene expression in spruce (Picea spp.). Phytochemistry 68:1975–1991

    PubMed  CAS  Google Scholar 

  • Ralph SG, Hudgins JW, Jancsik S, Franceschi VR, Bohlmann J (2007b) Aminocyclopropane carboxylic acid synthase is a regulated step in ethylene-dependent induced conifer defense. Full-length cDNA cloning of a multigene family, differential constitutive, and wound- and insect-induced expression, and cellular and subcellular localization in spruce and Douglas fir. Plant Physiol 143:410–424

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ralph SG, Chun HJE, Kolosova N, Cooper D, Oddy C, Ritland CE, Kirkpatrick R, Moore R, Barber S, Holt RA, Jones SJM, Marra MA, Douglas CJ, Ritland K, Bohlmann J (2008) A conifer genomics resource of 200,000 spruce (Picea spp.) ESTs and 6,464 high-quality, sequence-finished full-length cDNAs for Sitka spruce (Picea sitchensis). BMC Genomics 9:484

    PubMed  PubMed Central  Google Scholar 

  • Richard S, Lapointe G, Rutledge RG, Seguin A (2000) Induction of chalcone synthase expression in white spruce by wounding and jasmonate. Plant Cell Physiol 41:982–987

    PubMed  CAS  Google Scholar 

  • Ro DK, Bohlmann J (2006) Diterpene resin acid biosynthesis in loblolly pine (Pinus taeda): Functional characterization of abietadiene/levopimaradiene synthase (PtTPS-LAS) cDNA and subcellular targeting of PtTPS-LAS and abietadienol/abietadienal oxidase (PtAO, CYP720B1). Phytochemistry 67:1572–1578

    PubMed  CAS  Google Scholar 

  • Ro DK, Arimura GL, Lau SYW, Piers E, Bohlmann J (2005) Loblolly pine abietadienol/abietadienal oxidase PtAO (CYP720B1) is a multifunctional, multisubstrate cytochrome P450 monooxygenase. Proc Natl Acad Sci USA 102:8060–8065

    PubMed  CAS  PubMed Central  Google Scholar 

  • Salle A, Monclus R, Yart A, Lieutier F (2005) Effect of phenolic compounds on the in vitro growth of two fungi associated with Ips typographus. Forest Pathol 35:298–304

    Google Scholar 

  • Sato Y, Bao WL, Sederoff R, Whetten R (2001) Molecular cloning and expression of eight laccase cDNAs in loblolly pine (Pinus taeda). J Plant Res 114:147–155

    CAS  Google Scholar 

  • Schmidt A, Gershenzon J (2007) Cloning and characterization of isoprenyl diphosphate synthases with farnesyl diphosphate and geranylgeranyl diphosphate synthase activity from Norway spruce (Picea abies) and their relation to induced oleoresin formation. Phytochemistry 68:2649–2659

    PubMed  CAS  Google Scholar 

  • Schmidt A, Gershenzon J (2008) Cloning and characterization of two different types of geranyl diphosphate synthases from Norway spruce (Picea abies). Phytochemistry 69:49–57

    PubMed  CAS  Google Scholar 

  • Schmidt A, Zeneli G, Hietala AM, Fossdal CG, Krokene P, Christiansen E, Gershenzon J (2005) Induced chemical defences in conifers: Biochemical and molecular approaches to studying their function. In: Romeo JT (ed) Chemical ecology and phytochemistry in forest ecosystems. Elsevier, Amsterdam, pp 1–28

    Google Scholar 

  • Schmidt A, Wachtler B, Temp U, Krekling T, Seguin A, Gershenzon J (2009) A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Norway spruce (Picea abies). Plant Physiol 152(2):639–655

    PubMed  Google Scholar 

  • Schwekendiek A, Pfeffer G, Kindl H (1992) Pine stilbene synthase cDNA, a tool for probing environmental-stress. FEBS Lett 301:41–44

    PubMed  CAS  Google Scholar 

  • Sels J, Mathys J, De Coninck BMA, Cammue BPA, De Bolle MFC (2008) Plant pathogenesis-related (PR) proteins: A focus on PR peptides. Plant Physiol Biochem 46:941–950

    PubMed  CAS  Google Scholar 

  • Sharma P, Lonneborg A (1996) Isolation and characterization of a cDNA encoding a plant defensin-like protein from roots of Norway spruce. Plant Mol Biol 31:707–712

    PubMed  CAS  Google Scholar 

  • Sharma P, Borja D, Stougaard P, Lonneborg A (1993) Pr-proteins accumulating in spruce roots infected with a pathogenic Pythium sp isolate include chitinases, chitosanases and beta-1,3-glucanases. Physiol Mol Plant Pathol 43:57–67

    CAS  Google Scholar 

  • Six DL, Paine TD (1998) Effects of mycangial fungi and host tree species on progeny survival and emergence of Dendroctonus ponderosae (Coleoptera: Scolytidae). Environ Entomol 27:1393–1401

    Google Scholar 

  • Stasolla C, van Zyl L, Egertsdotter U, Craig D, Liu WB, Sederoff RR (2003) The effects of polyethylene glycol on gene expression of developing white spruce somatic embryos. Plant Physiol 131:49–60

    PubMed  CAS  PubMed Central  Google Scholar 

  • Steele CL, Katoh S, Bohlmann J, Croteau R (1998) Regulation of oleoresinosis in grand fir (Abies grandis) - Differential transcriptional control of monoterpene, sesquiterpene, and diterpene synthase genes in response to wounding. Plant Physiol 116:1497–1504

    PubMed  CAS  PubMed Central  Google Scholar 

  • Thomma B, Penninckx I, Broekaert WF, Cammue BPA (2001) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13:63–68

    PubMed  CAS  Google Scholar 

  • Tomlin ES, Borden JH, Pierce HD (1996) Relationship between cortical resin acids and resistance of Sitka spruce to the white pine weevil. Can J Bot 74:599–606

    CAS  Google Scholar 

  • Tomlin ES, Antonejevic E, Alfaro RI, Borden JH (2000) Changes in volatile terpene and diterpene resin acid composition of resistant and susceptible white spruce leaders exposed to simulated white pine weevil damage. Tree Physiol 20:1087–1095

    PubMed  CAS  Google Scholar 

  • Trapp S, Croteau R (2001) Defensive resin biosynthesis in conifers. Annu Rev Plant Physiol Plant Mol Biol 52:689–724

    PubMed  CAS  Google Scholar 

  • Van Loon LC, Van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Google Scholar 

  • Vargas-Arispuro I, Reyes-Baez R, Rivera-Castaneda G, Martinez-Tellez MA, Rivero-Espejel I (2005) Antifungal lignans from the creosotebush (Larrea tridentata). Ind Crops Prod 22:101–107

    CAS  Google Scholar 

  • Viiri H, Annila E, Kitunen V, Niemela P (2001) Induced responses in stilbenes and terpenes in fertilized Norway spruce after inoculation with blue-stain fungus, Ceratocystis polonica. Trees 15:112–122

    CAS  Google Scholar 

  • Wadenback J, von Arnold S, Egertsdotter U, Walter MH, Grima-Pettenati J, Goffner D, Gellerstedt G, Gullion T, Clapham D (2008) Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase (CCR). Transgenic Res 17:379–392

    PubMed  Google Scholar 

  • Wagner A, Donaldson L, Kim H, Phillips L, Flint H, Steward D, Torr K, Koch G, Schmitt U, Ralph J (2009) Suppression of 4-coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata. Plant Physiol 149:370–383

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wainhouse D, Cross DJ, Howell RS (1990) The role of lignin as a defense against the spruce bark beetle Dendroctonus-Micans - effect on larvae and adults. Oecologia 85:257–265

    Google Scholar 

  • Wainhouse D, Rose DR, Peace AJ (1997) The influence of preformed defences on the dynamic wound response in Spruce bark. Funct Ecol 11:564–572

    Google Scholar 

  • Wainhouse D, Ashburner R, Ward E, Boswell R (1998) The effect of lignin and bark wounding on susceptibility of spruce trees to Dendroctonus micans. J Chem Ecol 24:1551–1561

    CAS  Google Scholar 

  • Wallis C, Eyles A, Chorbadjian R, Gardener BM, Hansen R, Cipollini D, Herms DA, Bonello P (2008) Systemic induction of phloem secondary metabolism and its relationship to resistance to a canker pathogen in Austrian pine. New Phytol 177:767–778

    PubMed  CAS  Google Scholar 

  • Walters DR (2009) Are plants in the field already induced? Implications for practical disease control. Crop Prot 28:459–465

    Google Scholar 

  • Weng J, Chapple C (2010) The origin and evolution of lignin biosynthesis. New Phytol 187:273–285

    PubMed  CAS  Google Scholar 

  • Whetten RW, Sederoff RR (1992) Phenylalanine ammonia-lyase from loblolly-pine - purification of the enzyme and isolation of complementary-DNA clones. Plant Physiol 98:380–386

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wiweger M, Farbos I, Ingouff M, Lagercrantz U, von Arnold S (2003) Expression of Chia4-Pa chitinase genes during somatic and zygotic embryo development in Norway spruce (Picea abies): similarities and differences between gymnosperm and angiosperm class IV chitinases. J Exp Bot 54:2691–2699

    PubMed  CAS  Google Scholar 

  • Woodward S, Pearce RB (1988) The role of stilbenes in resistance of Sitka Spruce (Picea-Sitchensis (Bong) Carr) to entry of fungal pathogens. Physiol Mol Plant Pathol 33:127–149

    CAS  Google Scholar 

  • Wu JQ, Baldwin IT (2009) Herbivory-induced signalling in plants: perception and action. Plant Cell Environ 32:1161–1174

    PubMed  CAS  Google Scholar 

  • Wu HG, Echt CS, Popp MP, Davis JM (1997) Molecular cloning, structure and expression of an elicitor-inducible chitinase gene from pine trees. Plant Mol Biol 33:979–987

    PubMed  CAS  Google Scholar 

  • Yamaoka Y, Hiratsuka Y, Maruyama PJ (1995) The ability of Grosmannia clavigera to kill mature lodgepole pine trees. Eur J Forest Pathol 25:401–404

    Google Scholar 

  • Zareie R, Melanson DL, Murphy PJ (2002) Isolation of fungal cell wall degrading proteins from barley (Hordeum vulgare L.) leaves infected with Rhynchosporium secalis. Mol Plant Microbe Interact 15:1031–1039

    PubMed  CAS  Google Scholar 

  • Zeneli G, Krokene P, Christiansen E, Krekling T, Gershenzon J (2006) Methyl jasmonate treatment of mature Norway spruce (Picea abies) trees increases the accumulation of terpenoid resin components and protects against infection by Ceratocystis polonica, a bark beetle-associated fungus. Tree Physiol 26:977–988

    PubMed  CAS  Google Scholar 

  • Zulak KG, Bohlmann J (2010) Terpenoid biosynthesis and specialized vascular cells of conifer defense. J Integr Plant Biol 52:86–97

    PubMed  CAS  Google Scholar 

  • Zulak KG, Lippert DN, Kuzyk MA, Domanski D, Chou T, Borchers CH, Bohlmann J (2009) Targeted proteomics using selected reaction monitoring reveals the induction of specific terpene synthases in a multi-level study of methyl jasmonate-treated Norway spruce (Picea abies). Plant J 60:1015–1030

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Research in the laboratory of JB has been generously supported with funding from the Natural Science and Engineering Research Council of Canada in the form of NSERC Discovery and Strategic Grants; and with funding from Genome Canada and Genome British Columbia in support of the Treenomix Project (http://www.treenomix.ca), the smart forest project and the Tria Project (http://www.thetriaproject.ca). JB is Distinguished University Scholar of the University of British Columbia, Vancouver, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bohlmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolosova, N., Bohlmann, J. (2012). Conifer Defense Against Insects and Fungal Pathogens. In: Matyssek, R., Schnyder, H., Oßwald, W., Ernst, D., Munch, J., Pretzsch, H. (eds) Growth and Defence in Plants. Ecological Studies, vol 220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30645-7_4

Download citation

Publish with us

Policies and ethics