Consistency of Multidimensional Combinatorial Substitutions

  • Timo Jolivet
  • Jarkko Kari
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7353)

Abstract

Multidimensional combinatorial substitutions are rules that replace symbols by finite patterns of symbols in ℤd. We focus on the case where the patterns are not necessarily rectangular, which requires a specific description of the way they are glued together in the image by a substitution. Two problems can arise when defining a substitution in such a way: it can fail to be consistent, and the patterns in an image by the substitution might overlap.

We prove that it is undecidable whether a two-dimensional substitution is consistent or overlapping, and we provide practical algorithms to decide these properties in some particular cases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pytheas Fogg, N.: Substitutions in dynamics, arithmetics and combinatorics. Lecture Notes in Mathematics, vol. 1794. Springer, Berlin (2002)MATHCrossRefGoogle Scholar
  2. 2.
    Frank, N.P.: A primer of substitution tilings of the Euclidean plane. Expo. Math. 26, 295–326 (2008)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Fernique, T.: Local rule substitutions and stepped surfaces. Theoret. Comput. Sci. 380, 317–329 (2007)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Arnoux, P., Berthé, V., Siegel, A.: Two-dimensional iterated morphisms and discrete planes. Theoret. Comput. Sci. 319, 145–176 (2004)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Frank, N.P.: Detecting combinatorial hierarchy in tilings using derived Voronoï tesselations. Discrete Comput. Geom. 29, 459–476 (2003)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Jolivet, T., Kari, J.: Consistency of multidimensional combinatorial substitutions. Theoret. Comput. Sci. (to appear, 2012)Google Scholar
  7. 7.
    Kari, J.: Infinite Snake Tiling Problems. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp. 67–77. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Timo Jolivet
    • 1
    • 2
  • Jarkko Kari
    • 1
  1. 1.FUNDIM, Department of MathematicsUniversity of TurkuFinland
  2. 2.LIAFAUniversité Paris 7France

Personalised recommendations