Characterizing Certain Topological Specifications

  • Bernhard Heinemann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7353)

Abstract

We prove a characterization theorem à la van Benthem for a particular modal system called topologic, which is, among other things, suitable for specifying the interrelation between knowledge and topology. The comparison language arising naturally from the relevant semantics is well-known from the beginnings of topological model theory, and subset space bisimulations provide for the proper notion of invariance of formulas here.

Keywords

Modal Logic Modal Language Characterization Theorem Modal Formula Standard Translation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aiello, M., van Benthem, J., Bezhanishvili, G.: Reasoning about space: The modal way. Journal of Logic and Computation 13(6), 889–920 (2003)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Aiello, M., Pratt-Hartmann, I.E., van Benthem, J.F.A.K.: Handbook of Spatial Logics. Springer (2007)Google Scholar
  3. 3.
    Başkent, C.: Topics in Subset Space Logic. Master’s thesis, Institute for Logic, Language and Computation, Universiteit van Amsterdam (July 2007)Google Scholar
  4. 4.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)MATHGoogle Scholar
  5. 5.
    ten Cate, B., Gabelaia, D., Sustretov, D.: Modal languages for topology: Expressivity and definability. Annals of Pure and Applied Logic 159, 146–170 (2009)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Chang, C.C., Keisler, H.J.: Model Theory, 3rd edn. Studies in Logic and the Foundations of Mathematics, vol. 73. North-Holland, Amsterdam (1990)MATHGoogle Scholar
  7. 7.
    Dabrowski, A., Moss, L.S., Parikh, R.: Topological reasoning and the logic of knowledge. Annals of Pure and Applied Logic 78, 73–110 (1996)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press, Cambridge (1995)MATHGoogle Scholar
  9. 9.
    Flum, J., Ziegler, M.: Topological Model Theory. Lecture Notes in Mathematics, vol. 769. Springer, Berlin (1980)MATHGoogle Scholar
  10. 10.
    Georgatos, K.: Modal Logics of Topological Spaces. Ph.D. thesis, City University of New York (May 1993)Google Scholar
  11. 11.
    Mal’cev, A.I.: Model Correspondences. In: The Metamathematics of Algebraic Systems. Studies in Logic and the Foundation of Mathematics, ch. 11, vol. 63. North-Holland, Amsterdam (1971)Google Scholar
  12. 12.
    Moss, L.S., Parikh, R.: Topological reasoning and the logic of knowledge. In: Moses, Y. (ed.) Theoretical Aspects of Reasoning about Knowledge (TARK 1992), pp. 95–105. Morgan Kaufmann, Los Altos (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bernhard Heinemann
    • 1
  1. 1.Faculty of Mathematics and Computer ScienceUniversity of HagenHagenGermany

Personalised recommendations