Advertisement

Cooperative Database Caching within Cloud Environments

  • Andrei Vancea
  • Guilherme Sperb Machado
  • Laurent d’Orazio
  • Burkhard Stiller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7279)

Abstract

Semantic caching is a technique used for optimizing the evaluation of database queries by caching results of old queries and using them when answering new queries. CoopSC is a cooperative database caching architecture, which extends the classic semantic caching approach by allowing clients to share their local caches in a cooperative matter. Thus, this approach decreases the response time of database queries and the amount of data sent by database server, because the server only answers those parts of queries that are not available in the cooperative cache. Since most cloud providers charge in a “pay-per-use” matter the amount of transferred data between the cloud environment and the outside world, using such a cooperative caching approach within cloud environmnents presents additional economical advantages. This paper studies possible use-cases of CoopSC within real-world cloud environment and outlines both the technical and economical gains.

Keywords

Cloud Provider Database Server Cloud Environment Cache Size Database Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Amazon.com ec2: Ec2 frequently answered question, http://aws.amazon.com/ec2/faqs
  2. 2.
    Amazon.com web services: Products and services, http://aws.amazon.com/product
  3. 3.
    Global earthquake model, http://www.globalquakemodel.org
  4. 4.
    Gogrid website: Gogrid cloud services, http://www.gogrid.com
  5. 5.
    Rackspacecloud website: Rackspacecloud service, http://www.rackspacecloud.com
  6. 6.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Patterson, D.A., Rabkin, A., Zaharia, M.: Above the clouds: A Berkeley view of cloud computing. Technical report (2009)Google Scholar
  7. 7.
    Bitton, D., Turbyfill, C.: A retrospective on the Wisconsin benchmark. Readings in Database Systems (1988)Google Scholar
  8. 8.
    Brantner, M., Florescu, D., Graf, D., Kossmann, D., Kraska, T.: Building a database on s3. In: Proceedings of the 2008 ACM SIGMOD, pp. 251–264. ACM, New York (2008)CrossRefGoogle Scholar
  9. 9.
    Carey, M.J., Franklin, M.J., Livny, M., Shekita, E.J.: Data caching tradeoffs in client-server dbms architectures. SIGMOD Record 20(2) (1991)Google Scholar
  10. 10.
    Chen, L., Rundensteiner, E.A., Wang, S.: Xcache: a semantic caching system for xml queries. In: Proceedings of the ACM SIGMOD (2002)Google Scholar
  11. 11.
    Coleman, N., Raman, R., Livny, M., Solomon, M.: A peer-to-peer database server based on bittorrent. Technical Report 10891, School of Computing Science, Newcastle University (2008)Google Scholar
  12. 12.
    Dar, S., Franklin, M.J., Jónsson, B.T., Srivastava, D., Tan, M.: Semantic data caching and replacement. In: Proceedings of the International Conference on Very Large Databases, VLDB (1996)Google Scholar
  13. 13.
    Denneulin, Y., Labbé, C., d’Orazio, L., Roncancio, C.: Merging File Systems and Data Bases to Fit the Grid. In: Hameurlain, A., Morvan, F., Tjoa, A.M. (eds.) Globe 2010. LNCS, vol. 6265, pp. 13–25. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    d’Orazio, L., Traoré, M.K.: Semantic caching for pervasive grids. In: Proceedings of the International Database Engineering and Applications Symposium, IDEAS (2009)Google Scholar
  15. 15.
    Jónsson, B.T., Arinbjarnar, M., Thórsson, B., Franklin, M.J., Srivastava, D.: Performance and overhead of semantic cache management. ACM Transactions on Internet Technology 6(3) (2006)Google Scholar
  16. 16.
    Keller, A.M., Basu, J.: A predicate-based caching scheme for client-server database architectures. The VLDB Journal 5 (1996)Google Scholar
  17. 17.
    Lillis, K., Pitoura, E.: Cooperative xpath caching. In: Proceedings of the ACM SIGMOD (2008)Google Scholar
  18. 18.
    Padmanabhan, V.N., Sripanidkulchai, K.: The Case for Cooperative Networking. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 178–190. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Ren, Q., Dunham, M.H.: Using semantic caching to manage location dependent data in mobile computing. In: Proceedings of the Annual International Conference on Mobile Computing and Networking, MobiCom (2000)Google Scholar
  20. 20.
    Samet, H.: The quadtree and related hierarchical data structures. ACM Computing Surveys 16 (1984)Google Scholar
  21. 21.
    Tanin, E., Harwood, A., Samet, H.: Using a distributed quadtree index in peer-to-peer networks. The VLDB Journal 16 (2007)Google Scholar
  22. 22.
    Vancea, A., d’Orazio, L., Stiller, B.: Optimization of flow record handling by applying a decentralized cooperative semantic caching approach. In: 13th IEEE/IFIP Network Operations and Management Symposium (NOMS), Maui, Hawaii, USA (2012)Google Scholar
  23. 23.
    Vancea, A., Stiller, B.: CoopSC: A cooperative database caching architecture. In: Proceedings of the IEEE WETICE (2010)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Andrei Vancea
    • 1
  • Guilherme Sperb Machado
    • 1
  • Laurent d’Orazio
    • 2
  • Burkhard Stiller
    • 1
  1. 1.Department of Informatics (IFI)University of ZürichZürichSwitzerland
  2. 2.Blaise Pascal University, LIMOSFrance

Personalised recommendations