Brain, Gene, and Quantum Inspired Computational Intelligence

Abstract

This chapter discusses opportunities and challenges for the creation of methods of computational intelligence (CI) and more specifically – artificial neural networks (ANN), inspired by principles at different levels of information processing in the brain: cognitive, neuronal, genetic, and quantum, and mainly, the issues related to the integration of these principles into more powerful and accurate CI methods. It is demonstrated how some of these methods can be applied to model biological processes and to improve our understanding in the subject area; generic CI methods being applicable to challenging generic AI problems. The chapter first offers a brief presentation of some principles of information processing at different levels of the brain and then presents brain inspired, gene inspired, and quantum inspired CI. The main contribution of the chapter, however, is the introduction of methods inspired by the integration of principles from several levels of information processing, namely:
  1. 1.

    A computational neurogenetic model that in one model combines gene information related to spiking neuronal activities.

     
  2. 2.

    A general framework of a quantum spiking neural network (SNN) model.

     
  3. 3.

    A general framework of a quantum computational neurogenetic model (CNGM).

     
Many open questions and challenges are discussed, along with directions for further research.

Abbreviations

AI

artificial intelligence

AMPAR

(amino-methylisoxazole-propionic acid) receptor

ANN

artificial neural network

BDNF

brain-derived neurotrophic factor

BGO

brain-gene ontology

CI

computational intelligence

CLC

chloride channel

CNGM

computational neurogenetic model

DENFIS

dynamic neuro-fuzzy inference system

DNA

deoxyribonucleic acid

ECOS

evolving connectionist system

EEG

electroencephalography

EFuNN

evolving fuzzy neural network

FFT

fast Fourier transformation

FGF

fibroblast growth factor

GA

genetic algorithm

GABA

gamma-aminobutyric acid

GABRA

GABAA receptor

GABRB

GABAB receptor

GRN

gene regulatory network

KCN

kalium (potassium) voltage-gated channel

LFP

local field potential

MLP

multilayer perceptron

NMDA

N-methyl-d-aspartate

NMDAR

(N-methyl-d-aspartate acid) NMDA receptor

PS

presenilin

PSP

post-synaptic potential

PV

parvalbumin

QI

quantum inspired

QIEC

quantum inspired methods of evolutionary computation

RNA

ribonucleic acid

SCN

sodium voltage-gated channel

SNN

spiking neural network

SOM

self-organizing map

SRM

spike response model

SVM

support vector machine

TWNFI

transductive weighted neuro-fuzzy inference engine

mRNA

messenger RNA

References

  1. 60.1.
    C. Bishop: Neural Networks for Pattern Recognition (Oxford Univ. Press, Oxford, UK 1995)MATHGoogle Scholar
  2. 60.2.
    N. Kasabov, L. Benuskova: Computational neurogenetics, Int. J. Theor. Comput. Nanosci. 1(1), 47–61 (2004)CrossRefGoogle Scholar
  3. 60.3.
    G. Marcus: The Birth of the Mind: How a Tiny Number of Genes Creates the Complexity of the Human Mind (Basic, New York 2004)Google Scholar
  4. 60.4.
    A. Ezhov, D. Ventura: Quantum neural networks. In: Future Directions for Intelligent Systems and Information Sciences, ed. by N. Kasabov (Springer, Berlin, Heidelberg 2000) pp. 213–234CrossRefGoogle Scholar
  5. 60.5.
    A. Narayanan, T. Meneer: Quantum artificial neural network architectures and components, Inf. Sci. 128, 199–215 (2000)CrossRefMathSciNetGoogle Scholar
  6. 60.6.
    D.B. Fogel: Evolutionary Computation – Toward a New Philosophy of Machine Intelligence (IEEE, New York 1995)MATHGoogle Scholar
  7. 60.7.
    X. Yao: Evolutionary artificial neural networks, Int. J. Neural Syst. 4(3), 203–222 (1993)CrossRefGoogle Scholar
  8. 60.8.
    R. Penrose: Shadows of the Mind. A Search for the Missing Science of Conscious (Oxford Univ. Press, Oxford 1994)Google Scholar
  9. 60.9.
    R. Penrose: The Emperorʼs New Mind (Oxford Univ. Press, Oxford 1989)Google Scholar
  10. 60.10.
    S. Amari, N. Kasabov: Brain-like Computing and Intelligent Information Systems (Springer, New York 1998)MATHGoogle Scholar
  11. 60.11.
    M. Arbib: Brains, Machines and Mathematics (Springer, Berlin 1987)CrossRefMATHGoogle Scholar
  12. 60.12.
    M. Arbib (Ed.): The Handbook of Brain Theory and Neural Networks (MIT, Cambridge 2003)MATHGoogle Scholar
  13. 60.13.
    L. Benuskova, N. Kasabov: Towards Computational Neurogenetic Modelling (Springer, New York 2007)CrossRefGoogle Scholar
  14. 60.14.
    G. Carpenter, S. Grossberg, N. Markuzon, J.H. Reynolds, D.B. Rosen: Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analogue multi-dimensional maps, IEEE Trans. Neural Netw. 3(5), 698–713 (1991)CrossRefGoogle Scholar
  15. 60.15.
    G. Carpenter, S. Grossberg: Pattern Recognition by Self-Organizing Neural Networks (The MIT, Cambridge, USA 1991)Google Scholar
  16. 60.16.
    N. Kasabov: Foundations of neural networks. In: Fuzzy Systems and Knowledge Engineering (MIT Press, MA 1996)Google Scholar
  17. 60.17.
    T. Kohonen: Self-Organizing Maps (Springer, Cambridge 1997)CrossRefMATHGoogle Scholar
  18. 60.18.
    E. Rolls, A. Treves: Neural Networks and Brain Function (Oxford Univ. Press, Oxford 1998)Google Scholar
  19. 60.19.
    F. Rosenblatt: Principles of Neurodynamics (Spartan Books, New York 1962)MATHGoogle Scholar
  20. 60.20.
    D.E. Rumelhart, G.E. Hinton, R.J. Williams (Eds.): Learning Internal Representations by Error Propagation, Parallel Distrib, Processing: Explorations in the Microstructure of Cognition (MIT/Bradford Books, Cambridge 1986)Google Scholar
  21. 60.21.
    G.A. Rummery, M. Niranjan: On-line Q-learning Using Connectionist System (Cambridge Univ. Press, Cambridge 1994), 166 pp., CUED/F-INENG/TRGoogle Scholar
  22. 60.22.
    S. Schaal, C. Atkeson: Constructive incremental learning from only local information, Neural Comput. 10, 2047–2084 (1998)CrossRefGoogle Scholar
  23. 60.23.
    S. Grossberg: Studies of Mind and Brain (Reidel, Boston 1982)CrossRefMATHGoogle Scholar
  24. 60.24.
    J.G. Taylor: The Race for Consciousness (MIT, Cambridge 1999)Google Scholar
  25. 60.25.
    N. Kasabov: Evolving fuzzy neural networks – algorithms, applications and biological motivation. In: Methodologies for the Conception, Design and Application of Soft Computing, ed. by T. Yamakawa, G. Matsumoto (World Scientific, Singapore 1998) pp. 271–274Google Scholar
  26. 60.26.
    B. Fritzke: A growing neural gas network learns topologies, Adv. Neural Inf. Process. Syst. 7, 625–632 (1995)Google Scholar
  27. 60.27.
    J. Platt: A resource allocating network for function interpolation, Neural Comput. 3, 213–225 (1991)MathSciNetCrossRefGoogle Scholar
  28. 60.28.
    J. Freeman, D. Saad: On-line learning in radial basis function networks, Neural Comput. 9(7), 1601 –1622 (1997)CrossRefGoogle Scholar
  29. 60.29.
    T. Poggio: Regularization theory, radial basis functions and networks. In: From Statistics to Neural Networks: Theory and Pattern Recognition Applications, NATO ASI Series, Vol. 136, ed. by V. Cherkassky, J.H. Friedman, H. Wechsler (NATO, Les Arcs 1994) pp. 83–104Google Scholar
  30. 60.30.
    N. Kasabov: Evolving Connectionist Systems: The Knowledge Engineering Approach (Springer, London 2007)MATHGoogle Scholar
  31. 60.31.
    W. Maass, C.M. Bishop (Eds.): Pulsed Neural Networks (The MIT, Cambridge 1999)MATHGoogle Scholar
  32. 60.32.
    N. Kasabov, Q. Song: DENFIS: Dynamic, evolving neural-fuzzy inference systems and its application for time-series prediction, IEEE Trans. Fuzzy Syst. 10, 144–154 (2002)CrossRefGoogle Scholar
  33. 60.33.
    N. Kasabov: Evolving fuzzy neural networks for on-line supervised/unsupervised, knowledge – based learning, SMC B: Cybern. 31(6), 902–918 (2001)Google Scholar
  34. 60.34.
    T. Yamakawa, H. Kusanagi, E. Uchino, T. Miki: A new effective algorithm for neo fuzzy neuron model, Proc. Fifth IFSA World Congr. (IFSA, Seoul, Korea 1993) pp. 1017–1020Google Scholar
  35. 60.35.
    L.A. Zadeh: Fuzzy Sets, Inf. Control. 8, 338–353 (1965)MathSciNetCrossRefMATHGoogle Scholar
  36. 60.36.
    Q. Song, N. Kasabov: TWNFI – a transductive neuro-fuzzy inference system with weighted data normalisation for personalised modelling, Neural Netw. 19(10), 1591–1596 (2006)CrossRefMATHGoogle Scholar
  37. 60.37.
    W. Gerstner, W.M. Kistler: Spiking Neuron Models (Cambridge Univ. Press, Cambridge 2002)CrossRefMATHGoogle Scholar
  38. 60.38.
    A. Destexhe: Spike-and-wave oscillations based on the properties of GABAB receptors, J. Neurosci. 18, 9099–9111 (1998)Google Scholar
  39. 60.39.
    S. Wysoski, L. Benuskova, N. Kasabov: On-line learning with structural adaptation in a network of spiking neurons for visual pattern recognition, Artificial Neural Networks – ICANN 2006 4131, 61–70 (2006)CrossRefGoogle Scholar
  40. 60.40.
    C. Brown, M. Shreiber, B. Chapman, G. Jacobs: Information science and bioinformatics. In: Future Directions of Intelligent Systems and Information Sciences, ed. by N. Kasabov (Physica, Heidelberg 2000) pp. 251–287CrossRefGoogle Scholar
  41. 60.41.
    D.S. Dimitrov, I. Sidorov, N. Kasabov: Computational biology. In: Handbook of Theoretical and Computational Nanotechnology, Vol. 1, ed. by M. Rieth, W. Schommers (American Scientific, Stevenson Ranch 2004), Chap. 21Google Scholar
  42. 60.42.
    Z. Chan, N. Kasabov, L. Collins: A two-stage methodology for gene regulatory network extraction from time-course gene expression data, Expert Syst. Appl. 30(1), 59–63 (2006)CrossRefGoogle Scholar
  43. 60.43.
    H. Chin, S. Moldin (Eds.): Methods in Genomic Neuroscience (CRC, Boca Raton 2001)Google Scholar
  44. 60.44.
    N. Kasabov, S.H. Chan, V. Jain, I. Sidirov, S.D. Dimitrov: Gene Regulatory Network Discovery from Time-Series Gene Expression Data – A Computational Intelligence Approach, LNCS 3316, 1344–1353 (2004)Google Scholar
  45. 60.45.
    Allen Brain Institute: http://alleninstitute.org
  46. 60.46.
    The Knowledge Engineering and Discovery Research Institute (KEDRI), Auckland University of Technology: http://www.kedri.info
  47. 60.47.
    W. Freeman: Neurodynamics (Springer, London 2000)MATHGoogle Scholar
  48. 60.48.
    R.P. Feynman, R.B. Leighton, M. Sands: The Feynman Lectures on Physics (Addison-Wesley Publishing Company, Massachusetts 1965)MATHGoogle Scholar
  49. 60.49.
    T. Hey: Quantum computing: An introduction. In, Comput. Control Eng. J. 10(3), 105–112 (1999)CrossRefGoogle Scholar
  50. 60.50.
    T. Hogg, D. Portnov: Quantum optimization, Inf. Sci. 128, 181–197 (2000)MathSciNetCrossRefMATHGoogle Scholar
  51. 60.51.
    J.-S. Jang, K.-H. Han, J.-H. Kim: Quantum-inspired evolutionary algorithm-based face verification, LNCS 2724, 2147–2156 (2003)MATHGoogle Scholar
  52. 60.52.
    S.C. Kak: Quantum Neural Computation, Research Report (Louisiana State Univ., Baton Rouge 1995)Google Scholar
  53. 60.53.
    M. Brooks: Quantum Computing and Communications (Springer, Berlin, Heidelberg 1999)CrossRefMATHGoogle Scholar
  54. 60.54.
    L.K. Grover: A fast quantum mechanical algorithm for database search, STOC ʼ96: Proc. Twenty-Eighth Ann. ACM Symp. Theory Comput. (ACM, New York, USA 1996) pp. 212–219CrossRefGoogle Scholar
  55. 60.55.
    K.-H. Han, J.-H. Kim: Quantum-inspired evolutionary algorithms with a new termination criterion, H gate, and two phase scheme, IEEE Trans. Evol. Comput. 8(2), 156–169 (2004)CrossRefGoogle Scholar
  56. 60.56.
    G.E. Hinton: Connectionist learning procedures, Artif. Intell. 40, 185–234 (1989)CrossRefGoogle Scholar
  57. 60.57.
    M.A. Perkowski: Multiple-valued quantum circuits and research challenges for logic design and computational intelligence communities, IEEE Comput. Intell. Soc. Mag. 2005, 6–12 (2005)Google Scholar
  58. 60.58.
    P.W. Shor: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput. 26, 1484–1509 (1997)MathSciNetCrossRefMATHGoogle Scholar
  59. 60.59.
    L. Spector: Automatic Quantum Computer Programming: A Genetic Programming Approach (Kluwer Academic, Boston 2004)MATHGoogle Scholar
  60. 60.60.
    J. Liu, W. Xu, J. Sun: Quantum-Behaved Particle Swarm Optimization with Mutation Operator, 17th IEEE Int. Conf. Tools Artif. Intell. (ICTAIʼ05) (2005)Google Scholar
  61. 60.61.
    C.A. Trugenberger: Quantum pattern recognition, Quantum Inf. Process. 1, 471–493 (2002)MathSciNetCrossRefGoogle Scholar
  62. 60.62.
    X.-Y. Tsai, H.-C. Huang, S.-J. Chuang: Quantum NN vs. NN in signal recognition, in: ICITAʼ05, Proc. Third Int. Conf. Inf. Technol. Appl. (ICITAʼ05), Vol. 2 (IEEE Computer Society, Washington, DC, USA 2005) pp. 308–312Google Scholar
  63. 60.63.
    G.K. Venayagamoorthy, S. Gaurav: Quantum-inspired evolutionary algorithms and binary particle swarm optimization for training MLP and SRN neural networks, J. Theor. Comput. Nanosci. 2, 561–568 (2005)CrossRefGoogle Scholar
  64. 60.64.
    N. Kouda, N. Matsui, H. Nishimura, F. Peper: Qu-bit neural network and its learning efficiency, Neural Comput. Appl. 14, 114–121 (2005)CrossRefGoogle Scholar
  65. 60.65.
    D. Ventura, T. Martinez: Quantum associative memory, Inf. Sci. Inf. Comput. Sci. 124, 273–296 (2000)MathSciNetGoogle Scholar
  66. 60.66.
    D. Ventura: Implementing competitive learning in a quantum system. In, Proc. Int. Jt. Conf. Neural Netw. (IEEE 1999)Google Scholar
  67. 60.67.
    G. Xie, Z. Zhuang: A quantum competitive learning algorithm, Liangzi Dianzi Xuebao/Chin. J. Quantum Electron. (China) 20, 42–46 (2003)Google Scholar

Copyright information

© Springer-Verlag 2014

Authors and Affiliations

  1. 1.KEDRI – Knowledge Engineering and Discovery Research InstituteAuckland University of TechnologyAucklandNew Zealand

Personalised recommendations