Advertisement

Multi-Viewpoints Ontology Alignment Based on Description Logics

  • Lynda Djakhdjakha
  • Mounir Hemam
  • Zizette Boufaida
Part of the Communications in Computer and Information Science book series (CCIS, volume 294)

Abstract

Nowadays the utility of multi-viewpoint approach is widely acknowledged in many areas, such as ontologies domain. The two concepts ontology and viewpoint are complementary, indeed the ontology represents the knowledge shared by multiple users and the viewpoint represents the domain knowledge that is relevant at a given viewpoint. With the coupling of these tow notions, we are talking about multi-viewpoints ontology. Multi-viewpoints ontology gives the same universe of discourse several partial descriptions such that each one is on a particular viewpoint. Due to the decentralized nature of the Web, there always exist multiple multi-viewpoints ontologies for overlapped domains and even for the same domain. Therefore, multi-viewpoints ontology alignment, is necessary to establish interoperation between Web application using different multi-veiwpoints ontologies. In this paper, we approach the problem of aligning multi-viewpoints ontologies. We focus firstly on the definition of multi-viewpoints ontology in description logics extended by a stamping mechanism. Then, we introduce the notion of multi-viewpoints in the alignment process.

Keywords

Semantic Web multi-viewpoints ontology ontologies alignment description logics stamping mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rath, A.S., Devaurs, D., Lindstaedt, S.N.: An Ontology-Based Approach for Detecting Knowledge Intensive Tasks. Journal of Digital Information Management 9(1), 9–18 (2011)Google Scholar
  2. 2.
    Kossmann, M., Odeh, M., Gillies, A., Watts, S.: Ontology-driven Requirements Engineering with Reference to the Aerospace Industry. Journal of E-Technology 1(1), 22–30 (2010)Google Scholar
  3. 3.
    Falquet, G., Mottaz, J.C.L.: Navigation Hypertexte dans une Ontologie Multi-Points de Vue. In: NîmesTIC 2001, France (2001) Google Scholar
  4. 4.
    Hemam, M., Boufaïda, Z.: MVP-OWL: a multi-viewpoints ontology language for the Semantic Web. International Journal of Reasoning-based Intelligent Systems (IJRIS) 3(3/4), 147–155 (2011)CrossRefGoogle Scholar
  5. 5.
    Falquet, G., Mottaz, J.C.L.: A Model for the Collaborative Design of Multi-Point-of-View Terminological Knowledge Bases. In: Dieng, R., Matta, N. (eds.) Knowledge Management and Organizational Memories. Kluwer (2002); Preliminary version published in Proceedings of the Knowledge Management and Organizational Memory workshop of the International Joint Conference on Artificial Intelligence, Stockholm(1999) Google Scholar
  6. 6.
    Benslimane, D., Arara, A., Falquet, G., Maamar, Z., Thiran, P., Gargouri, F.: Contextual Ontologies: Motivations, Challenges, and Solutions. In: Yakhno, T., Neuhold, E.J. (eds.) ADVIS 2006. LNCS, vol. 4243, pp. 168–176. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  8. 8.
    Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching. The LDB Journal 10(4), 334–350 (2001)zbMATHGoogle Scholar
  9. 9.
    Shvaiko, P., Euzenat, J.: A Survey of Schema-Based Matching Approaches. In: Spaccapietra, S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 146–171. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications, ch. 2, pp. 43–95. Cambridge University Press (2003)Google Scholar
  11. 11.
    Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Studia Logica 69(1), 5–40 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Calvanese, D., Giacomo, G.D., Lenzerini, M., Nardi, D.: Reasoning in expressive description logics. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 23, pp. 1581–1634. ElsevierScience Publishers (North-Holland), Amsterdam (2001)Google Scholar
  13. 13.
    Baader, F., Horrocks, I., Sattler, U.: Chapter 3 Description Logics. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation. Elsevier (2007)Google Scholar
  14. 14.
    Horrocks, I., Sattler, U.: Ontology Reasoning in the SHOQ(D) Description Logic. In: Proceeding of the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 199–204 (2001)Google Scholar
  15. 15.
    Bouquet, P., Euzenat, J., Franconi, E., Serafini, L., Stamou, G., Tessaris, S.: Specification of a common framework for characterizing alignment. Deliverable 2.2.1, Knoledge Web NoE (2004) Google Scholar
  16. 16.
    Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Berlin (2007)zbMATHGoogle Scholar
  17. 17.
    Noy, N., Musen, M.: PROMPT: Algorithm and Tool for Automated Ontology Merging and Alignment. In: Proceedings of the National Conference on Artificial Intelligence (AAAI) (2000) Google Scholar
  18. 18.
    Noy, N., Musen, M.A.: Smart: Automated Support for Oontology Merging and Alignme. In: Proceedings of the Twelfth Banff Workshop on Knowledge Acquistion, Modeling, and Management, Banff Algeberta (1999) Google Scholar
  19. 19.
    Ichise, R.,Takeda, H., Honiden, S.: Rule Induction for Concept Hierarchy Alignment. In: Proceedings of the Workshop on Ontology Learning at the 17th International Joint Conference on Artificial Intelligence (IJCAI) (2001) Google Scholar
  20. 20.
    Kalfoglou, Y., Hu, B.: CROSI Mapping System (CMS) Results of the 2005 Ontology Alignment Contest. In: K-CAP Integrating Ontologies Workshop 2005, Banff, Alberta, Canada (2005) Google Scholar
  21. 21.
    Hemam, M., Boufaida, Z.: Représentation d’ontologies multi-points de vue: une approche basée sur la logique de descriptions. In: 20es Journées Francophones d’Ingénierie des Connaissances (IC 2009) (2009) Google Scholar
  22. 22.
    Benchikha, F., Boufaida, M.: The Viewpoint Mechanism for Object-oriented Databases Modelling, Distribution and Evolution. Journal of Computing and Information Technology 15, 95–110 (2007)Google Scholar
  23. 23.
    Euzenat, J., Valtchev, P.: An integrative proximity measure for ontology alignment. In: Proceedings of the 1st Intl. Workshop on Semantic Integration, vol. 82 (2003) Google Scholar
  24. 24.
    Shi, F., Li, J., Tang, J., Xie, G., Li, H.: Actively Learning Ontology Matching via User Interaction. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 585–600. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Zimmermann, A., Euzenat, J.: Three Semantics for Distributed Systems and Their Relations with Alignment Composition. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 16–29. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Zimmermann, A., Duc, C.: Reasonig with a Network of Aligned Ontologies (2008) Google Scholar
  27. 27.
    Djakhdjakha, L., Hemam, M., Boufaida, Z.: Une approche d’alignment d’une ontologie multi-points de vue et une ontologie classique. In: International Conference on Applied Informatics, Bordj Bou Arreridj, Algeria (2009) Google Scholar
  28. 28.
    Djakhdjakha, L., Hemam, M.: L’optimisation d’alignement d’une ontologie multi-points de vue et une ontologie classique. In COSI 2010, Algeria (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lynda Djakhdjakha
    • 1
    • 3
  • Mounir Hemam
    • 2
  • Zizette Boufaida
    • 3
  1. 1.Department of Computer Science08 May 1945 University of GuelmaGuelmaAlgeria
  2. 2.Department of Computer ScienceUniversity of KhenchelaKhenchelaAlgeria
  3. 3.LIRE Laboratory, Department of Computer ScienceMentouri University of ConstantineConstantineAlgeria

Personalised recommendations