Challenges for Refinement and Composition of Instrumentations: Position Paper

  • Danilo Ansaloni
  • Walter Binder
  • Christoph Bockisch
  • Eric Bodden
  • Kardelen Hatun
  • Lukáš Marek
  • Zhengwei Qi
  • Aibek Sarimbekov
  • Andreas Sewe
  • Petr Tůma
  • Yudi Zheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7306)

Abstract

Instrumentation techniques are widely used for implementing dynamic program analysis tools like profilers or debuggers. While there are many toolkits and frameworks to support the development of such low-level instrumentations, there is little support for the refinement or composition of instrumentations. A common practice is thus to copy and paste from existing instrumentation code. This, of course, violates well-established software engineering principles, results in code duplication, and hinders maintenance. In this position paper we identify two challenges regarding the refinement and composition of instrumentations and illustrate them with a running example.

Keywords

Instrumentation composition aspect-oriented programming domain-specific languages 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ammons, G., Ball, T., Larus, J.R.: Exploiting hardware performance counters with flow and context sensitive profiling. In: Proceedings of the Conference on Programming Language Design and Implementation, pp. 85–96 (1997)Google Scholar
  2. 2.
    Aracic, I., Gasiunas, V., Mezini, M., Ostermann, K.: An Overview of CaesarJ. In: Rashid, A., Aksit, M. (eds.) Transactions on AOSD I. LNCS, vol. 3880, pp. 135–173. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Bergmans, L.M.J.: Akşit, M.: Principles and design rationale of composition filters. In: Aspect-Oriented Software Development, pp. 63–96. Addison-Wesley (2004)Google Scholar
  4. 4.
    Binder, W., Ansaloni, D., Villazón, A., Moret, P.: Flexible and efficient profiling with aspect-oriented programming. Concurrency and Computation: Practice and Experience 23(15), 1749–1773 (2011)CrossRefGoogle Scholar
  5. 5.
    Chiba, S.: Load-Time Structural Reflection in Java. In: Bertino, E. (ed.) ECOOP 2000. LNCS, vol. 1850, pp. 313–336. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Flanagan, C., Freund, S.N.: The RoadRunner dynamic analysis framework for concurrent programs. In: Proceedings of the 9th Workshop on Program Analysis for Software Tools and Engineering, pp. 1–8 (2010)Google Scholar
  7. 7.
    Greenwood, P., Blair, L.: A Framework for Policy Driven Auto-Adaptive Systems Using Dynamic Framed Aspects. In: Rashid, A., Aksit, M. (eds.) Transactions on AOSD II. LNCS, vol. 4242, pp. 30–65. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An Overview of AspectJ. In: Lee, S.H. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 327–354. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Marek, L., Villazón, A., Zheng, Y., Ansaloni, D., Binder, W., Qi, Z.: DiSL: a domain-specific language for bytecode instrumentation. In: Proceedings of the 11th International Conference on Aspect-Oriented Software Development (2012)Google Scholar
  10. 10.
    Moret, P., Binder, W., Tanter, É.: Polymorphic bytecode instrumentation. In: Proceedings of the 10th International Conference on Aspect-Oriented Software Development, pp. 129–140 (2011)Google Scholar
  11. 11.
    Rudolph, J., Thiemann, P.: Mnemonics: type-safe bytecode generation at run time. In: Proceedings of the Workshop on Partial Evaluation and Program Manipulation, pp. 15–24 (2010)Google Scholar
  12. 12.
    Suvée, D., Vanderperren, W., Jonckers, V.: JAsCo: an aspect-oriented approach tailored for component based software development. In: Proceedings of the 2nd International Conference on Aspect-Oriented Software Development, pp. 21–29 (2003)Google Scholar
  13. 13.
    Tanter, E., Moret, P., Binder, W., Ansaloni, D.: Composition of dynamic analysis aspects. In: Proceedings of the 9th International Conference on Generative Programming and Component Engineering, pp. 113–122 (2010)Google Scholar
  14. 14.
    Tarr, P., Osher, H., Stanley, M., Sutton, J., William Harrison, W.: N degrees of separation: multi-dimensional separation of concerns. In: Aspect-Oriented Software Development, pp. 37–61. Addison-Wesley (2004)Google Scholar
  15. 15.
    Vallée-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.: Soot - a Java optimization framework. In: Proceedings of the Conference of the Centre for Advanced Studies on Collaborative Research, pp. 214–224 (1999)Google Scholar
  16. 16.
    Villazón, A., Binder, W., Moret, P.: Flexible calling context reification for aspect-oriented programming. In: Proceedings of the 8th International Conference on Aspect-Oriented Software Development, pp. 63–74 (2009)Google Scholar
  17. 17.
    Villazón, A., Binder, W., Moret, P., Ansaloni, D.: Comprehensive aspect weaving for Java. Science of Computer Programming 76(11), 1015–1036 (2011)CrossRefGoogle Scholar
  18. 18.
    Zheng, Y., Ansaloni, D., Marek, L., Sewe, A., Binder, W., Villazón, A., Tuma, P., Qi, Z., Mezini, M.: Turbo DiSL: partial evaluation for high-level bytecode instrumentation. In: TOOLS 2012 – Objects, Models, Components, Patterns (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Danilo Ansaloni
    • 1
  • Walter Binder
    • 1
  • Christoph Bockisch
    • 2
  • Eric Bodden
    • 3
  • Kardelen Hatun
    • 2
  • Lukáš Marek
    • 4
  • Zhengwei Qi
    • 5
  • Aibek Sarimbekov
    • 1
  • Andreas Sewe
    • 3
  • Petr Tůma
    • 4
  • Yudi Zheng
    • 5
  1. 1.University of LuganoSwitzerland
  2. 2.University of TwenteThe Netherlands
  3. 3.Technische Universität DarmstadtGermany
  4. 4.Charles UniversityCzech Republic
  5. 5.Shanghai Jiao Tong UniversityChina

Personalised recommendations