Identifying a Unifying Mechanism for the Implementation of Concurrency Abstractions on Multi-language Virtual Machines

  • Stefan Marr
  • Theo D’Hondt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7304)


Supporting all known abstractions for concurrent and parallel programming in a virtual machines (VM) is a futile undertaking, but it is required to give programmers appropriate tools and performance. Instead of supporting all abstractions directly, VMs need a unifying mechanism similar to INVOKEDYNAMIC for JVMs.

Our survey of parallel and concurrent programming concepts identifies concurrency abstractions as the ones benefiting most from support in a VM. Currently, their semantics is often weakened, reducing their engineering benefits. They require a mechanism to define flexible language guarantees.

Based on this survey, we define an ownership-based meta-object protocol as candidate for VM support. We demonstrate its expressiveness by implementing actor semantics, software transactional memory, agents, CSP, and active objects. While the performance of our prototype confirms the need for VM support, it also shows that the chosen mechanism is appropriate to express a wide range of concurrency abstractions in a unified way.


Virtual Machines Language Support Abstraction Parallelism Concurrency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bracha, G., Ungar, D.: Mirrors: design principles for meta-level facilities of object-oriented programming languages. In: Proc. of OOPSLA 2004, pp. 331–344. ACM (2004)Google Scholar
  2. 2.
    Briot, J.P., Guerraoui, R., Lohr, K.P.: Concurrency and distribution in object-oriented programming. ACM Computing Surveys 30(3), 291–329 (1998)CrossRefGoogle Scholar
  3. 3.
    Budimlic, Z., Chandramowlishwaran, A., Knobe, K., Lowney, G., Sarkar, V., Treggiari, L.: Multi-core implementations of the concurrent collections programming model. In: The 14th Workshop on Compilers for Parallel Computing (January 2009)Google Scholar
  4. 4.
    Bykov, S., Geller, A., Kliot, G., Larus, J.R., Pandya, R., Thelin, J.: Orleans: Cloud computing for everyone. In: Proc. of SOCC 2011, pp. 16:1–16:14. ACM (2011)Google Scholar
  5. 5.
    Demsky, B., Lam, P.: Views: object-inspired concurrency control. In: Proc. of ICSE 2010 (2010)Google Scholar
  6. 6.
    Gal, A., Probst, C.W., Franz, M.: Hotpathvm: An effective jit compiler for resource-constrained devices. In: Proc. of VEE 2006, pp. 144–153. ACM (2006)Google Scholar
  7. 7.
    Gelernter, D.: Generative communication in linda. ACM TOPLAS 7, 80–112 (1985)zbMATHCrossRefGoogle Scholar
  8. 8.
    Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous java performance evaluation. SIGPLAN Not. 42(10), 57–76 (2007)CrossRefGoogle Scholar
  9. 9.
    Halstead Jr., R.H.: Multilisp: a language for concurrent symbolic computation. ACM Trans. Program. Lang. Syst. 7, 501–538 (1985)zbMATHCrossRefGoogle Scholar
  10. 10.
    Hoffman, K.J., Metzger, H., Eugster, P.: Ribbons: A partially shared memory programming model. SIGPLAN Not. 46, 289–306 (2011)CrossRefGoogle Scholar
  11. 11.
    Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the jvm platform: A comparative analysis. In: Proc. of PPPJ 2009, pp. 11–20. ACM (2009)Google Scholar
  12. 12.
    Kiczales, G., des Rivières, J., Bobrow, D.G.: The Art of the Metaobject Protocol. MIT (1991)Google Scholar
  13. 13.
    Lavender, R.G., Schmidt, D.C.: Active object: An object behavioral pattern for concurrent programming. In: Pattern Languages of Program Design 2, pp. 483–499. Addison-Wesley Longman Publishing Co., Inc. (1996)Google Scholar
  14. 14.
    Lea, D.: A java fork/join framework. In: JAVA 2000: Proceedings of the ACM 2000 Conference on Java Grande, pp. 36–43. ACM (2000)Google Scholar
  15. 15.
    Lublinerman, R., Zhao, J., Budimlić, Z., Chaudhuri, S., Sarkar, V.: Delegated isolation. SIGPLAN Not. 46, 885–902 (2011)CrossRefGoogle Scholar
  16. 16.
    Lämmel, R.: Google’s mapreduce programming model - revisited. SCP 70(1), 1–30 (2008)zbMATHGoogle Scholar
  17. 17.
    Marr, S., Haupt, M., D’Hondt, T.: Intermediate language design of high-level language virtual machines: Towards comprehensive concurrency support. In: Proc. VMIL 2009 Workshop, pp. 3:1–3:2. ACM (October 2009) (extended abstract)Google Scholar
  18. 18.
    Miller, M.S., Tribble, E.D., Shapiro, J.S.: Concurrency Among Strangers: Programming in E as Plan Coordination. In: De Nicola, R., Sangiorgi, D. (eds.) TGC 2005. LNCS, vol. 3705, pp. 195–229. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Morandi, B., Bauer, S.S., Meyer, B.: SCOOP – A Contract-Based Concurrent Object-Oriented Programming Model. In: Müller, P. (ed.) LASER Summer School 2007/2008. LNCS, vol. 6029, pp. 41–90. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Nordlander, J., Jones, M.P., Carlsson, M., Kieburtz, R.B., Black, A.P.: Reactive objects. In: Symposium on Object-Oriented Real-Time Distributed Computing, pp. 155–158 (2002)Google Scholar
  21. 21.
    Renggli, L., Nierstrasz, O.: Transactional memory for smalltalk. In: ICDL 2007: Proceedings of the 2007 International Conference on Dynamic Languages, pp. 207–221. ACM (2007)Google Scholar
  22. 22.
    Scholliers, C., Tanter, E., De Meuter, W.: Parallel actor monitors. In: 14th Brazilian Symposium on Programming Languages (2010)Google Scholar
  23. 23.
    Schäfer, J., Poetzsch-Heffter, A.: JCoBox: Generalizing Active Objects to Concurrent Components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275–299. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Shavit, N., Touitou, D.: Software transactional memory. In: Proc. of PODC 1995. ACM (1995)Google Scholar
  25. 25.
    Skillicorn, D.B., Talia, D.: Models and languages for parallel computation. ACM CSUR 30, 123–169 (1998)CrossRefGoogle Scholar
  26. 26.
    Thalinger, C., Rose, J.: Optimizing invokedynamic. In: Proc. of PPPJ 2010, pp. 1–9. ACM (2010)Google Scholar
  27. 27.
    Van Cutsem, T., Miller, M.S.: Proxies: Design principles for robust object-oriented intercession apis. In: Proc. of DLS 2010, pp. 59–72. ACM (October 2010)Google Scholar
  28. 28.
    Van Cutsem, T., Mostinckx, S., Gonzalez Boix, E., Dedecker, J., De Meuter, W.: Ambienttalk: Object-oriented event-driven programming in mobile ad hoc networks. In: Proc. of SCCC 2007, pp. 3–12. IEEE CS (2007)Google Scholar
  29. 29.
    Verwaest, T., Bruni, C., Lungu, M., Nierstrasz, O.: Flexible object layouts: Enabling lightweight language extensions by intercepting slot access. In: Proc. of OOPSLA 2011, pp. 959–972 (2011)Google Scholar
  30. 30.
    Ziarek, L., Welc, A., Adl-Tabatabai, A.-R., Menon, V., Shpeisman, T., Jia, L.: A Uniform Transactional Execution Environment for Java. In: Ryan, M. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 129–154. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stefan Marr
    • 1
  • Theo D’Hondt
    • 1
  1. 1.Software Languages LabVrije Universiteit BrusselElseneBelgium

Personalised recommendations