Dynamic PageRank Using Evolving Teleportation

  • Ryan A. Rossi
  • David F. Gleich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7323)


The importance of nodes in a network constantly fluctuates based on changes in the network structure as well as changes in external interest. We propose an evolving teleportation adaptation of the PageRank method to capture how changes in external interest influence the importance of a node. This framework seamlessly generalizes PageRank because the importance of a node will converge to the PageRank values if the external influence stops changing. We demonstrate the effectiveness of the evolving teleportation on the Wikipedia graph and the Twitter social network. The external interest is given by the number of hourly visitors to each page and the number of monthly tweets for each user.


Dynamic Graph Page Count Forward Euler Method PageRank Vector PageRank Score 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., Preda, M., Cobena, G.: Adaptive on-line page importance computation. In: WWW, pp. 280–290. ACM (2003)Google Scholar
  2. 2.
    Ahmed, N., Atiya, A., El Gayar, N., El-Shishiny, H.: An empirical comparison of machine learning models for time series forecasting. Econ. Rev. 29(5-6), 594–621 (2010)CrossRefGoogle Scholar
  3. 3.
    Bagrow, J., Wang, D., Barabási, A.: Collective response of human populations to large-scale emergencies. PloS one 6(3), e17680 (2011)Google Scholar
  4. 4.
    Becchetti, L., Castillo, C., Donato, D., Baeza-Yates, R., Leonardi, S.: Link analysis for web spam detection. ACM Trans. Web 2(1), 1–42 (2008)CrossRefGoogle Scholar
  5. 5.
    Bianchini, M., Gori, M., Scarselli, F.: Inside PageRank. ACM Transactions on Internet Technologies 5(1), 92–128 (2005)CrossRefGoogle Scholar
  6. 6.
    Boldi, P.: TotalRank: Ranking without damping. In: WWW, pp. 898–899 (2005)Google Scholar
  7. 7.
    Boldi, P., Santini, M., Vigna, S.: Paradoxical effects in PageRank incremental computations. Internet Mathematics 2(2), 387–404 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bonacich, P.: Power and centrality: A family of measures. American Journal of Sociology, 1170–1182 (1987)Google Scholar
  9. 9.
    Chien, S., Dwork, C., Kumar, R., Simon, D., Sivakumar, D.: Link evolution: Analysis and algorithms. Internet Mathematics 1(3), 277–304 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Constantine, P., Gleich, D.: Random alpha PageRank. Internet Mathematics 6(2), 189–236 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Das Sarma, A., Gollapudi, S., Panigrahy, R.: Estimating PageRank on graph streams. In: SIGMOD, pp. 69–78. ACM (2008)Google Scholar
  12. 12.
    Dunlavy, D.M., Kolda, T.G., Acar, E.: Temporal link prediction using matrix and tensor factorizations. TKDD 5(2), 10:1–10:27 (2011)Google Scholar
  13. 13.
    Embree, M., Lehoucq, R.B.: Dynamical systems and non-hermitian iterative eigensolvers. SIAM Journal on Numerical Analysis 47(2), 1445–1473 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Freeman, L.: Centrality in social networks conceptual clarification. Social Networks 1(3), 215–239 (1979)CrossRefGoogle Scholar
  15. 15.
    Gleich, D., Glynn, P., Golub, G., Greif, C.: Three results on the PageRank vector: eigenstructure, sensitivity, and the derivative. In: Web Information Retrieval and Linear Algebra Algorithms (2007)Google Scholar
  16. 16.
    Grindrod, P., Parsons, M., Higham, D., Estrada, E.: Communicability across evolving networks. Physical Review E 83(4), 046120 (2011)Google Scholar
  17. 17.
    Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)zbMATHCrossRefGoogle Scholar
  18. 18.
    Kleinberg, J.: Authoritative sources in a hyperlinked environment. Journal of the ACM (JACM) 46(5), 604–632 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Langville, A.N., Meyer, C.D.: Updating PageRank with iterative aggregation. In: WWW, pp. 392–393 (2004)Google Scholar
  20. 20.
    Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press (2006)Google Scholar
  21. 21.
    Mathieu, F., Bouklit, M.: The effect of the back button in a random walk: application for PageRank. In: WWW, pp. 370–371 (2004)Google Scholar
  22. 22.
    Morrison, J.L., Breitling, R., Higham, D.J., Gilbert, D.R.: GeneRank: using search engine technology for the analysis of microarray experiments. BMC Bioinformatics 6(1), 233 (2005)CrossRefGoogle Scholar
  23. 23.
    O’Madadhain, J., Smyth, P.: Eventrank: A framework for ranking time-varying networks. In: LinkKDD, pp. 9–16. ACM (2005)Google Scholar
  24. 24.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order to the web (1998)Google Scholar
  25. 25.
    Ratkiewicz, J., Fortunato, S., Flammini, A., Menczer, F., Vespignani, A.: Characterizing and modeling the dynamics of online popularity. Physical Review Letters 105(15), 158701 (2010)CrossRefGoogle Scholar
  26. 26.
    Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: dynamic tensor analysis. In: SIGKDD, KDD 2006, pp. 374–383. ACM, New York (2006)Google Scholar
  27. 27.
    Suzuki, Y., et al.: Identification and characterization of the potential promoter regions of 1031 kinds of human genes. Genome Research 11(5), 677–684 (2001)CrossRefGoogle Scholar
  28. 28.
    Various. Wikipedia database dump, Version from (March 6, 2009),
  29. 29.
    Various. Wikipedia pageviews (2011), (accessed in 2011)

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ryan A. Rossi
    • 1
  • David F. Gleich
    • 1
  1. 1.Department of Computer SciencePurdue UniversityWest LafayetteUSA

Personalised recommendations