Stuctural and Mechanical Properties of Model DNA

  • Thomas  E. Ouldridge
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The model is specifically designed to allow an approximate representation of B-DNA in its double-stranded state. The relative sizes of the equilibrium backbone separation and ideal stacking distance lead to a pitch of 10.34 bp per turn at 296.15 K (\(23^{\mathrm o}\)C, approximately room temperature) similar to experimental estimates of 10–10.5. The model length scale is chosen so that the average rise per bp at room temperature is 3.4 Å, which results in a helix with a radius (taken as the furthest extent of the excluded volume) of 11.5 Å, comparable to the experimental value of 11.5–12 Å.

Keywords

Single Strand Persistence Length Helix Axis Exclude Volume Interaction Strand Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W. Saenger. Principles of Nucleic Acid Structure. Springer-Verlag, New York, 1984.Google Scholar
  2. 2.
    R. R. Sinden. DNA structure and function. Academic Press Inc., London, 1994.Google Scholar
  3. 3.
    S. Pitchiaya and Y. Krishnan. First blueprint, now bricks: DNA as construction material on the nanoscale. Chem. Soc. Rev., 35:1111–1121, 2006.Google Scholar
  4. 4.
    P. Chen and C. M. Li. Nanopore unstacking of single-stranded DNA helices. Small, 3(7):1204–1208, 2007.Google Scholar
  5. 5.
    C. R. Calladine et al. Understanding DNA. Elsevier Academic Press, London, 2004.Google Scholar
  6. 6.
    C. R. Cantor and P. R. Schimmel. Biophysical Chemistry part III: The behaviour of biological macromolecules. Freeman, San Francisco, 1980.Google Scholar
  7. 7.
    M. Rubinstein and R. H. Colby. Polymer physics. Oxford University Press, New York, 2003.Google Scholar
  8. 8.
    P. J. Hagerman. Flexibility of DNA. Annu. Rev. Biophys. Biophys. Chem., 17:265–286, 1988.Google Scholar
  9. 9.
    C. G. Baumann et al. Ionic effects on the elasticity of single DNA molecules. Proc. Natl. Acad. Sci. USA, 94:6185–6190, 1997.Google Scholar
  10. 10.
    D. M. Crothers et al. DNA bending, flexibility and helical repeat by cyclization kinetics. Methods Enzymol., 212:3–29, 1992.Google Scholar
  11. 11.
    M. Vologodskaia and A. Vologodskii. Contribution of the intrinsic curvature to measured DNA persistence length. J. Mol. Biol., 317(2):205–213, 2002.Google Scholar
  12. 12.
    B. S. Fujimoto, G. P. Brewood, and J. M. Schurr. Torsional rididity of wakly strainded DNAs. Biophys. J., 91(11):4166–4179, 2006.Google Scholar
  13. 13.
    Z. Bryant et al. Structural transitions and elasticity from torque measurements on DNA. Nature, 424(6946):338–341, 2003.Google Scholar
  14. 14.
    M. D. Wang et al. Stretching DNA with optical tweezers. Biophys. J., 72(3):1335–1346, 1997.Google Scholar
  15. 15.
    J. R. Wenner et al. Salt dependence of the elasticity and overstretching transition of single DNA molecules. Biophys. J., 82(6):3160–3169, 2002.Google Scholar
  16. 16.
    S. B. Smith, Y. Cui, and C. Bustamante. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science, 271(5250):795–799, 1996.Google Scholar
  17. 17.
    P. Gross, N. Laurens, and L. B. Oddershede. Quantifying how DNA stretches, melts and changes twist under tension. Nat. Phys., published, online, 2011Google Scholar
  18. 18.
    T. Odijk. Stiff chains and filaments under tension. Macromolecules, 28(20):7016–7018, 1995.Google Scholar
  19. 19.
    J. Gore et al. DNA overwinds when stretched. Nature, 442:836–839, 2006.Google Scholar
  20. 20.
    T. Lionnet et al. Wringing out DNA. Phys. Rev. Lett., 96(17):178102, 2006.Google Scholar
  21. 21.
    J. B. Mills, E. Vacano, and P. J. Hagerman. Flexibility of single-stranded DNA: use of gapped duplex helices to determine the persistence lengths of Poly(dT) and Poly(dA). J. Mol. Biol., 285(1):245–257, 1999.Google Scholar
  22. 22.
    Y. Seol et al. Stretching of homopolymeric RNA reveals single-stranded helices and base-stacking. Phys. Rev. Lett., 98(15):158103, 2007.Google Scholar
  23. 23.
    C. Rivetti, C. Walker, and C. Bustamante. Polymer chain statistics and conformational analysis of DNA molecules with bends or sections of different flexibility. J. Mol. Biol., 280:41–59, 1998.Google Scholar
  24. 24.
    M. C. Murphy et al. Probing single-stranded DNA conformational flexibility using flourescence spectroscopy. Biophys. J., 86:2530–2537, 2004.Google Scholar
  25. 25.
    M.-N. Dessinges et al. Stretching single stranded DNA, a model polyelectrolyte. Phys. Rev. Lett., 89(24):248102, 2002.Google Scholar
  26. 26.
    Y. Seol, G. M. Skinner, and K. Visscher. Elastic properties of a single-stranded charged homopolymeric ribonucleotide. Phys. Rev. Lett., 93(11):118102, 2004.Google Scholar
  27. 27.
    G. Mishra, D. Giri, and S. Kumar. Stretching of a single-stranded DNA: Evidence for structural transition. Phys. Rev. E, 79(3):031930, 2009.Google Scholar
  28. 28.
    W.-S. Chen et al. Direct observation of multiple pathways of single-stranded DNA stretching. Phys. Rev. Lett., 105(21):218104, 2010.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thomas  E. Ouldridge
    • 1
  1. 1.University of OxfordOxfordUK

Personalised recommendations