Combining and Analyzing Judicial Databases

  • Susan van den Braak
  • Sunil Choenni
  • Sicco Verwer
Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 3)

Abstract

To monitor crime and law enforcement, databases of several organizations, covering different parts of the criminal justice system, have to be integrated. Combined data from different organizations may then be analyzed, for instance, to investigate how specific groups of suspects move through the system. Such insight is useful for several reasons, for example, to define an effective and coherent safety policy. To integrate or relate judicial data two approaches are currently employed: a data warehouse and a dataspace approach. The former is useful for applications that require combined data on an individual level. The latter is suitable for data with a higher level of aggregation. However, developing applications that exploit combined judicial data is not without risk. One important issue while handling such data is the protection of the privacy of individuals. Therefore, several precautions have to be taken in the data integration process: use aggregate data, follow the Dutch Personal Data Protection Act, and filter out privacy-sensitive results. Another issue is that judicial data is essentially different from data in exact or technical sciences. Therefore, data mining should be used with caution, in particular to avoid incorrect conclusions and to prevent discrimination and stigmatization of certain groups of individuals.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Choenni, S., Bakker, R., Blok, H., de Laat, R.: Supporting technologies for knowledge management. In: Baets, W. (ed.) Knowledge Management and Management Learning: Extending the Horizons of Knowledge-Based Management. Integrated Series in Information Systems, Part 2, vol. 9, pp. 89–112 (2005), doi:10.1007/0-387-25846-9_6Google Scholar
  2. Choenni, S., Blanken, H., Chang, T.: Index selection in relational databases. In: Proceedings of ICCI 1993, Fifth International Conference on Computing and Information, pp. 491–496 (1993), doi:10.1109/ICCI.1993.315323Google Scholar
  3. Choenni, S., van Dijk, J., Leeuw, F.: Preserving privacy whilst integrating data: Applied to criminal justice. Information Polity 15(1,2), 125–138 (2010), doi:10.3233/IP-2010-0202Google Scholar
  4. Choenni, S., Leertouwer, E.: Public Safety Mashups to Support Policy Makers. In: Andersen, K.N., Francesconi, E., Grönlund, Å., van Engers, T.M. (eds.) EGOVIS 2010. LNCS, vol. 6267, pp. 234–248. Springer, Heidelberg (2010), doi:10.1007/978-3-642-15172-9_22.CrossRefGoogle Scholar
  5. Choenni, S., Kalidien, S., Ariel, A., Moolenaar, D.: A framework to monitor public safety based on a data space approach. In: Janssen, M., Macintosh, A., Scholl, H.J., Tambouris, E., Wimmer, M.A., de Bruijn, H., Tan, Y.-H. (eds.) Electronic Government and Electronic Participation. Joint Proceedings of Ongoing Research and Projects of IFIP EGOV and ePart 2011. Schriftenreihe Informatik, vol. 37, pp. 196–202. Trauner, Linz (2001)Google Scholar
  6. Choenni, S., Meijer, R.: From police and judicial databases to an offender-oriented data warehouse. In: Proceedings of the IADIS International Conference on e-Society, pp. 98–105 (2011)Google Scholar
  7. Franklin, M., Halevy, A., Maier, D.: From databases to dataspaces: a new abstraction for information management. SIGMOD Record 34(4), 27–33 (2005)CrossRefGoogle Scholar
  8. Hand, D.J.: Data mining: statistics and more? The American Statistician 52(2), 112–118 (1998)MathSciNetGoogle Scholar
  9. De Heer-de Lange, N.E., Kalidien, S.: Criminaliteit en rechtshandhaving 2009: ontwikkelingen en samenhangen [crime and law enforcement 2009]. Onderzoek en Beleid. vol. 279. Boom Juridische uitgevers, The Hague (2010)Google Scholar
  10. Kalidien, S., Choenni, S., Meijer, R.: Towards a tool for monitoring crime and law enforcement. In: Proceedings of ECIME 2009, the 3rd European Conference on Information Management and Evaluation, pp. 239–247 (2009)Google Scholar
  11. Kalidien, S., Choenni, S., Meijer, R.: Crime statistics online: potentials and challenges. In: Proceedings of the 11th Annual International Digital Government Research Conference on Public Administration Online: Challenges and Opportunities (dg.o 2010), pp. 131–137 (2010)Google Scholar
  12. Kalidien, S., de Heer-de Lange, N.E.: Criminaliteit en rechtshandhaving 2010: ontwikkelingen en samenhangen [Crime and law enforcement 2010] Onderzoek en Beleid. vol. 298. Boom Juridische uitgevers, The Hague (2011)Google Scholar
  13. Kimball, R., Ross, M.: The data warehouse toolkit: the complete guide to dimensional modeling, 2nd edn. John Wiley & Sons, Inc., New York (2002)Google Scholar
  14. Meijer, R., van Dijk, J., Leertouwer, E., Choenni, S.: A drug crime data mart to support publication on demand. In: Proceedings of the 2nd European Conference on Information Management and Evaluation, pp. 277–286 (2008)Google Scholar
  15. Sauerwein, L.B., Linnemann, J.J.: Guidelines for personal data processors: personal data protection act. Ministry of Justice, The Hague (2001)Google Scholar
  16. Tan, P., Steinbach, M., Kumar, V.: Introduction to data mining. Addison Wesley, London (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Susan van den Braak
    • 1
  • Sunil Choenni
    • 1
  • Sicco Verwer
    • 1
  1. 1.Research and Documentation Centre(WODC) of the Ministry of Security and JusticeAmsterdamThe Netherlands

Personalised recommendations