A Framework for the Specification of Random SAT and QSAT Formulas

  • Nadia Creignou
  • Uwe Egly
  • Martina Seidl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7305)

Abstract

We present the framework [q]bfGen which allows the declarative specification of random models for generating SAT and QSAT formulas not necessarily in (prenex) conjunctive normal form. To this end, [q]bfGen realizes a generic formula generator which creates formula instances by interpreting the random model specification expressed in XML. Consequently, the implementation of specific random formula generators becomes obsolete, because our framework subsumes their functionality.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    qbfGen Project Site, http://fmv.jku.at/qbfgen/
  2. 2.
    Benedetti, M., Mangassarian, H.: QBF-Based Formal Verification: Experience and Perspectives. JSAT 5(1-4), 133–191 (2008)MathSciNetGoogle Scholar
  3. 3.
    Brummayer, R., Lonsing, F., Biere, A.: Automated Testing and Debugging of SAT and QBF Solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 44–57. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Chen, H., Interian, Y.: A Model for Generating Random Quantified Boolean Formulas. In: Proc. of IJCAI 2005, pp. 66–71. Professional Book Center (2005)Google Scholar
  5. 5.
    Creignou, N., Daudé, H., Egly, U., Rossignol, R.: (1,2)-QSAT: A Good Candidate for Understanding Phase Transitions Mechanisms. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 363–376. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Egly, U., Seidl, M., Tompits, H., Woltran, S., Zolda, M.: Comparing Different Prenexing Strategies for Quantified Boolean Formulas. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 214–228. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Egly, U., Seidl, M., Woltran, S.: A solver for QBFs in negation normal form. Constraints 14(1), 38–79 (2009)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Gent, I., Walsh, T.: Beyond NP: The QSAT Phase Transition. In: Proc. of AAAI/IAAI 1999, pp. 648–653 (1999)Google Scholar
  9. 9.
    Gent, I.P., Walsh, T.: The SAT Phase Transition. In: Proc. of ECAI 1994, pp. 105–109 (1994)Google Scholar
  10. 10.
    Goultiaeva, A., Iverson, V., Bacchus, F.: Beyond CNF: A Circuit-Based QBF Solver. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 412–426. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Klieber, W., Sapra, S., Gao, S., Clarke, E.: A Non-Prenex, Non-Clausal QBF Solver with Game-State Learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 128–142. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: 2+p-sat: Relation of typical-case complexity to the nature of the phase transition. Random Struct. Algorithms 15(3-4), 414–435 (1999)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Navarro, J., Voronkov, A.: Generation of Hard Non-Clausal Random Satisfiability Problems. In: Proc. AAAI/IAAI 2005, pp. 436–442 (2005)Google Scholar
  14. 14.
    Prasad, M.R., Biere, A., Gupta, A.: A survey of recent advances in SAT-based formal verification. STTT 7(2), 156–173 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nadia Creignou
    • 1
  • Uwe Egly
    • 2
  • Martina Seidl
    • 3
    • 4
  1. 1.Laboratoire d’Informatique Fondamentale CNRS UMR 7279Aix-Marseille UniversitéFrance
  2. 2.Institut für Informationssysteme 184/3Technische Universität WienAustria
  3. 3.Institute for Formal Models and VerificationJohannes Kepler UniversityAustria
  4. 4.Institut für Interaktive Systeme 188/3Technische Universität WienAustria

Personalised recommendations