CW-PRED: A HMM-Based Method for the Classification of Cell Wall-Anchored Proteins of Gram-Positive Bacteria

  • Danai K. Fimereli
  • Konstantinos D. Tsirigos
  • Zoi I. Litou
  • Theodore D. Liakopoulos
  • Pantelis G. Bagos
  • Stavros J. Hamodrakas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7297)


Gram-positive bacteria have surface proteins that are often implicated in virulence. A group of extracellular proteins attached to the cell wall contains an LPXTG-like motif that is target for cleavage and covalent coupling to peptidoglycan by sortase enzymes. A Hidden Markov Model (HMM) was developed for predicting the LPXTG and LPXTG-like cell-wall proteins of Gram-positive bacteria. The model is the first capable of predicting alternative (i.e. other than LPXTG-containing) substrates. Our analysis of 177 completely sequenced genomes identified 1456 cell-wall proteins, a number larger compared to the previously available methods. Among these, apart from the previously identified 1283 proteins carrying the LPXTG motif, we identified 39 newly identified proteins carrying NPXTG, 53 carrying LPXTA and 81 carrying the LAXTG motif. The tool is freely available for academic use at .


Gram-positive bacteria cell-wall proteins sortase substrates LPXTG-like motifs Hidden Markov Models proteome analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lee, S.G., Pancholi, V., Fischetti, V.A.: Characterization of a unique glycosylated anchor endopeptidase that cleaves the LPXTG sequence motif of cell surface proteins of Gram-positive bacteria. J. Biol. Chem. 277, 46912–46922 (2002)CrossRefGoogle Scholar
  2. 2.
    Cabanes, D., Dehoux, P., Dussurget, O., Frangeul, L., Cossart, P.: Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol. 10, 238–245 (2002)CrossRefGoogle Scholar
  3. 3.
    Navarre, W.W., Schneewind, O.: Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 63, 174–229 (1999)Google Scholar
  4. 4.
    Fischetti, V.A., Pancholi, V., Schneewind, O.: Conservation of a hexapeptide sequence in the anchor region of surface proteins from gram-positive cocci. Mol. Microbiol. 4, 1603–1605 (1990)CrossRefGoogle Scholar
  5. 5.
    Marraffini, L.A., Dedent, A.C., Schneewind, O.: Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiol. Mol. Biol. Rev. 70, 192–221 (2006)CrossRefGoogle Scholar
  6. 6.
    Roche, F.M., Massey, R., Peacock, S.J., Day, N.P., Visai, L., Speziale, P., Lam, A., Pallen, M., Foster, T.J.: Characterization of novel LPXTG-containing proteins of Staphylococcus aureus identified from genome sequences. Microbiology 149, 643–654 (2003)CrossRefGoogle Scholar
  7. 7.
    Guttilla, I.K., Gaspar, A.H., Swierczynski, A., Swaminathan, A., Dwivedi, P., Das, A., Ton-That, H.: Acyl enzyme intermediates in sortase-catalyzed pilus morphogenesis in gram-positive bacteria. J. Bacteriol. 191, 5603–5612 (2009)CrossRefGoogle Scholar
  8. 8.
    Mazmanian, S.K., Ton-That, H., Su, K., Schneewind, O.: An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis. Proc. Natl. Acad. Sci. U S A 99, 2293–2298 (2002)CrossRefGoogle Scholar
  9. 9.
    Ton-That, H., Mazmanian, S.K., Faull, K.F., Schneewind, O.: Anchoring of surface proteins to the cell wall of Staphylococcus aureus. Sortase catalyzed in vitro transpeptidation reaction using LPXTG peptide and NH(2)-Gly(3) substrates. J. Biol. Chem. 275, 9876–9881 (2000)CrossRefGoogle Scholar
  10. 10.
    Marraffini, L.A., Schneewind, O.: Targeting proteins to the cell wall of sporulating Bacillus anthracis. Mol. Microbiol. 62, 1402–1417 (2006)CrossRefGoogle Scholar
  11. 11.
    Maresso, A.W., Schneewind, O.: Sortase as a target of anti-infective therapy. Pharmacol. Rev. 60, 128–141 (2008)CrossRefGoogle Scholar
  12. 12.
    Ton-That, H., Marraffini, L.A., Schneewind, O.: Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochim. Biophys. Acta 1694, 269–278 (2004)CrossRefGoogle Scholar
  13. 13.
    Zhou, M., Boekhorst, J., Francke, C., Siezen, R.J.: LocateP: genome-scale subcellular-location predictor for bacterial proteins. BMC Bioinformatics 9, 173 (2008)CrossRefGoogle Scholar
  14. 14.
    Boekhorst, J., de Been, M.W., Kleerebezem, M., Siezen, R.J.: Genome-wide detection and analysis of cell wall-bound proteins with LPxTG-like sorting motifs. J. Bacteriol. 187, 4928–4934 (2005)CrossRefGoogle Scholar
  15. 15.
    Litou, Z.I., Bagos, P.G., Tsirigos, K.D., Liakopoulos, T.D., Hamodrakas, S.J.: Prediction of cell wall sorting signals in gram-positive bacteria with a hidden markov model: application to complete genomes. J. Bioinform. Comput. Biol. 6, 387–401 (2008)CrossRefGoogle Scholar
  16. 16.
    Hobohm, U., Scharf, M., Schneider, R., Sander, C.: Selection of representative protein data sets. Protein Science: A Publication of the Protein Society 1, 409–417 (1992)Google Scholar
  17. 17.
    Wu, C.H., Apweiler, R., Bairoch, A., Natale, D.A., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M.J., Mazumder, R., O’Donovan, C., Redaschi, N., Suzek, B.: The Universal Protein Resource (UniProt): an expanding universe of protein information. Nucleic Acids Res. 34, D187–D191 (2006)Google Scholar
  18. 18.
    Comfort, D., Clubb, R.T.: A comparative genome analysis identifies distinct sorting pathways in gram-positive bacteria. Infect Immun. 72, 2710–2722 (2004)CrossRefGoogle Scholar
  19. 19.
    Davies, J.R., Svensater, G., Herzberg, M.C.: Identification of novel LPXTG-linked surface proteins from Streptococcus gordonii. Microbiology 155, 1977–1988 (2009)CrossRefGoogle Scholar
  20. 20.
    Egan, S.A., Kurian, D., Ward, P.N., Hunt, L., Leigh, J.A.: Identification of sortase A (SrtA) substrates in Streptococcus uberis: evidence for an additional hexapeptide (LPXXXD) sorting motif. J. Proteome Res. 9, 1088–1095 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Danai K. Fimereli
    • 1
  • Konstantinos D. Tsirigos
    • 1
  • Zoi I. Litou
    • 1
  • Theodore D. Liakopoulos
    • 2
  • Pantelis G. Bagos
    • 2
  • Stavros J. Hamodrakas
    • 1
  1. 1.Department of Cell Biology and Biophysics, Faculty of BiologyUniversity of AthensAthensGreece
  2. 2.Department of Computer Science and Biomedical InformaticsUniversity of Central GreeceLamiaGreece

Personalised recommendations